sophiaaez's picture
End of training
8f99ca3
---
base_model: sophiaaez/distilhubert_clone
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert_clone-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.82
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert_clone-finetuned-gtzan
This model is a fine-tuned version of [sophiaaez/distilhubert_clone](https://huggingface.co/sophiaaez/distilhubert_clone) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6718
- Accuracy: 0.82
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.9972 | 1.0 | 113 | 1.7844 | 0.52 |
| 1.4046 | 2.0 | 226 | 1.2909 | 0.63 |
| 1.1165 | 3.0 | 339 | 1.0493 | 0.69 |
| 0.879 | 4.0 | 452 | 0.8689 | 0.73 |
| 0.7814 | 5.0 | 565 | 0.7254 | 0.81 |
| 0.47 | 6.0 | 678 | 0.7432 | 0.79 |
| 0.5201 | 7.0 | 791 | 0.6523 | 0.81 |
| 0.2419 | 8.0 | 904 | 0.6086 | 0.83 |
| 0.375 | 9.0 | 1017 | 0.6481 | 0.82 |
| 0.249 | 10.0 | 1130 | 0.6718 | 0.82 |
### Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0