SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 30 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
ls |
|
cd |
|
mkdir docs |
|
mkdir projects |
|
mkdir data |
|
mkdir images |
|
mkdir scripts |
|
rm example.txt |
|
rm temp.txt |
|
rm file1 |
|
rm file2 |
|
rm backup.txt |
|
cp file1 /destination |
|
cp file2 /backup |
|
cp file3 /archive |
|
cp file4 /temp |
|
cp file5 /images |
|
mv file2 /new_location |
|
mv file3 /backup |
|
mv file4 /archive |
|
mv file5 /temp |
|
mv file6 /images |
|
cat README.md |
|
cat notes.txt |
|
cat data.csv |
|
cat script.sh |
|
cat config.ini |
|
grep 'pattern' data.txt |
|
grep 'word' text.txt |
|
grep 'keyword' document.txt |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.0 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("souvenger/NLP2Linux")
# Run inference
preds = model("Install package 'vim' as superuser")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 5 | 5.6667 | 9 |
Label | Training Sample Count |
---|---|
cat README.md | 1 |
cat config.ini | 1 |
cat data.csv | 1 |
cat notes.txt | 1 |
cat script.sh | 1 |
cd | 10 |
cp file1 /destination | 1 |
cp file2 /backup | 1 |
cp file3 /archive | 1 |
cp file4 /temp | 1 |
cp file5 /images | 1 |
grep 'keyword' document.txt | 1 |
grep 'pattern' data.txt | 1 |
grep 'word' text.txt | 1 |
ls | 10 |
mkdir data | 1 |
mkdir docs | 1 |
mkdir images | 1 |
mkdir projects | 1 |
mkdir scripts | 1 |
mv file2 /new_location | 1 |
mv file3 /backup | 1 |
mv file4 /archive | 1 |
mv file5 /temp | 1 |
mv file6 /images | 1 |
rm backup.txt | 1 |
rm example.txt | 1 |
rm file1 | 1 |
rm file2 | 1 |
rm temp.txt | 1 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (1, 1)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 20
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0042 | 1 | 0.1215 | - |
0.2083 | 50 | 0.0232 | - |
0.4167 | 100 | 0.01 | - |
0.625 | 150 | 0.0044 | - |
0.8333 | 200 | 0.0025 | - |
Framework Versions
- Python: 3.10.13
- SetFit: 1.0.3
- Sentence Transformers: 2.3.1
- Transformers: 4.37.0
- PyTorch: 2.1.2
- Datasets: 2.1.0
- Tokenizers: 0.15.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.