Spaces:
Running
Running
import re | |
import datetime | |
from typing import TypeVar, Dict, List, Tuple | |
from itertools import compress | |
import pandas as pd | |
import numpy as np | |
# Model packages | |
import torch | |
from threading import Thread | |
from transformers import AutoTokenizer, pipeline, TextIteratorStreamer | |
# Alternative model sources | |
from gpt4all import GPT4All | |
from ctransformers import AutoModelForCausalLM | |
from dataclasses import asdict, dataclass | |
# Langchain functions | |
from langchain import PromptTemplate | |
from langchain.prompts import PromptTemplate | |
from langchain.vectorstores import FAISS | |
from langchain.retrievers import SVMRetriever | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.docstore.document import Document | |
# For keyword extraction | |
import nltk | |
nltk.download('wordnet') | |
from nltk.corpus import stopwords | |
from nltk.tokenize import RegexpTokenizer | |
from nltk.stem import WordNetLemmatizer | |
import keybert | |
#from transformers.pipelines import pipeline | |
# For Name Entity Recognition model | |
from span_marker import SpanMarkerModel | |
# For BM25 retrieval | |
from gensim.corpora import Dictionary | |
from gensim.models import TfidfModel, OkapiBM25Model | |
from gensim.similarities import SparseMatrixSimilarity | |
import gradio as gr | |
torch_device = "cuda" if torch.cuda.is_available() else "cpu" | |
print("Running on device:", torch_device) | |
threads = torch.get_num_threads() | |
print("CPU threads:", threads) | |
PandasDataFrame = TypeVar('pd.core.frame.DataFrame') | |
embeddings = None # global variable setup | |
vectorstore = None # global variable setup | |
full_text = "" # Define dummy source text (full text) just to enable highlight function to load | |
ctrans_llm = [] # Define empty list to hold CTrans LLMs for functions to run | |
temperature: float = 0.1 | |
top_k: int = 3 | |
top_p: float = 1 | |
repetition_penalty: float = 1.05 | |
last_n_tokens: int = 64 | |
max_new_tokens: int = 125 | |
#seed: int = 42 | |
reset: bool = False | |
stream: bool = True | |
threads: int = threads | |
batch_size:int = 512 | |
context_length:int = 2048 | |
gpu_layers:int = 0 | |
sample = False | |
## Highlight text constants | |
hlt_chunk_size = 20 | |
hlt_strat = [" ", ".", "!", "?", ":", "\n\n", "\n", ","] | |
hlt_overlap = 0 | |
## Initialise NER model ## | |
ner_model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-mbert-base-multinerd") | |
## Initialise keyword model ## | |
# Used to pull out keywords from chat history to add to user queries behind the scenes | |
kw_model = pipeline("feature-extraction", model="sentence-transformers/all-MiniLM-L6-v2") | |
## Chat models ## | |
ctrans_llm = [] # Not leaded by default | |
#ctrans_llm = AutoModelForCausalLM.from_pretrained('TheBloke/orca_mini_3B-GGML', model_type='llama', model_file='orca-mini-3b.ggmlv3.q4_0.bin') | |
#ctrans_llm = AutoModelForCausalLM.from_pretrained('TheBloke/orca_mini_3B-GGML', model_type='llama', model_file='orca-mini-3b.ggmlv3.q8_0.bin') | |
#gpt4all_model = GPT4All(model_name= "orca-mini-3b.ggmlv3.q4_0.bin", model_path="models/") # "ggml-mpt-7b-chat.bin" | |
# Huggingface chat model | |
hf_checkpoint = 'declare-lab/flan-alpaca-large' | |
def create_hf_model(model_name): | |
from transformers import AutoModelForSeq2SeqLM, AutoModelForCausalLM | |
# model_id = model_name | |
if torch_device == "cuda": | |
if "flan" in model_name: | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, load_in_8bit=True, device_map="auto") | |
elif "mpt" in model_name: | |
model = AutoModelForCausalLM.from_pretrained(model_name, load_in_8bit=True, device_map="auto", trust_remote_code=True) | |
else: | |
model = AutoModelForCausalLM.from_pretrained(model_name, load_in_8bit=True, device_map="auto") | |
else: | |
if "flan" in model_name: | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_name) | |
elif "mpt" in model_name: | |
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) | |
else: | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, model_max_length = 2048) | |
return model, tokenizer, torch_device | |
model, tokenizer, torch_device = create_hf_model(model_name = hf_checkpoint) | |
# Vectorstore funcs | |
def docs_to_faiss_save(docs_out:PandasDataFrame, embeddings=embeddings): | |
print(f"> Total split documents: {len(docs_out)}") | |
vectorstore_func = FAISS.from_documents(documents=docs_out, embedding=embeddings) | |
''' | |
#with open("vectorstore.pkl", "wb") as f: | |
#pickle.dump(vectorstore, f) | |
''' | |
#if Path(save_to).exists(): | |
# vectorstore_func.save_local(folder_path=save_to) | |
#else: | |
# os.mkdir(save_to) | |
# vectorstore_func.save_local(folder_path=save_to) | |
global vectorstore | |
vectorstore = vectorstore_func | |
out_message = "Document processing complete" | |
#print(out_message) | |
#print(f"> Saved to: {save_to}") | |
return out_message | |
# # Prompt functions | |
def create_prompt_templates(): | |
#EXAMPLE_PROMPT = PromptTemplate( | |
# template="\nCONTENT:\n\n{page_content}\n\nSOURCE: {source}\n\n", | |
# input_variables=["page_content", "source"], | |
#) | |
CONTENT_PROMPT = PromptTemplate( | |
template="{page_content}\n\n",#\n\nSOURCE: {source}\n\n", | |
input_variables=["page_content"] | |
) | |
# The main prompt: | |
instruction_prompt_template_alpaca_quote = """### Instruction: | |
Quote directly from the SOURCE below that best answers the QUESTION. Only quote full sentences in the correct order. If you cannot find an answer, start your response with "My best guess is: ". | |
CONTENT: {summaries} | |
QUESTION: {question} | |
Response:""" | |
instruction_prompt_template_orca = """ | |
### System: | |
You are an AI assistant that follows instruction extremely well. Help as much as you can. | |
### User: | |
Answer the QUESTION using information from the following CONTENT. | |
CONTENT: {summaries} | |
QUESTION: {question} | |
### Response:""" | |
INSTRUCTION_PROMPT=PromptTemplate(template=instruction_prompt_template_orca, input_variables=['question', 'summaries']) | |
return INSTRUCTION_PROMPT, CONTENT_PROMPT | |
def adapt_q_from_chat_history(question, chat_history, extracted_memory, keyword_model=""):#keyword_model): # new_question_keywords, | |
chat_history_str, chat_history_first_q, chat_history_first_ans, max_chat_length = _get_chat_history(chat_history) | |
if chat_history_str: | |
# Keyword extraction is now done in the add_inputs_to_history function | |
extracted_memory = extracted_memory#remove_q_stopwords(str(chat_history_first_q) + " " + str(chat_history_first_ans)) | |
new_question_kworded = str(extracted_memory) + ". " + question #+ " " + new_question_keywords | |
#extracted_memory + " " + question | |
else: | |
new_question_kworded = question #new_question_keywords | |
#print("Question output is: " + new_question_kworded) | |
return new_question_kworded | |
def create_doc_df(docs_keep_out): | |
# Extract content and metadata from 'winning' passages. | |
content=[] | |
meta=[] | |
meta_url=[] | |
page_section=[] | |
score=[] | |
for item in docs_keep_out: | |
content.append(item[0].page_content) | |
meta.append(item[0].metadata) | |
meta_url.append(item[0].metadata['source']) | |
page_section.append(item[0].metadata['page_section']) | |
score.append(item[1]) | |
# Create df from 'winning' passages | |
doc_df = pd.DataFrame(list(zip(content, meta, page_section, meta_url, score)), | |
columns =['page_content', 'metadata', 'page_section', 'meta_url', 'score']) | |
docs_content = doc_df['page_content'].astype(str) | |
doc_df['full_url'] = "https://" + doc_df['meta_url'] | |
return doc_df | |
def hybrid_retrieval(new_question_kworded, k_val, out_passages, | |
vec_score_cut_off, vec_weight, bm25_weight, svm_weight): # ,vectorstore, embeddings | |
vectorstore=globals()["vectorstore"] | |
embeddings=globals()["embeddings"] | |
docs = vectorstore.similarity_search_with_score(new_question_kworded, k=k_val) | |
print("Docs from similarity search:") | |
print(docs) | |
# Keep only documents with a certain score | |
docs_len = [len(x[0].page_content) for x in docs] | |
docs_scores = [x[1] for x in docs] | |
# Only keep sources that are sufficiently relevant (i.e. similarity search score below threshold below) | |
score_more_limit = pd.Series(docs_scores) < vec_score_cut_off | |
docs_keep = list(compress(docs, score_more_limit)) | |
if docs_keep == []: | |
docs_keep_as_doc = [] | |
docs_content = [] | |
docs_url = [] | |
return docs_keep_as_doc, docs_content, docs_url | |
# Only keep sources that are at least 100 characters long | |
length_more_limit = pd.Series(docs_len) >= 100 | |
docs_keep = list(compress(docs_keep, length_more_limit)) | |
if docs_keep == []: | |
docs_keep_as_doc = [] | |
docs_content = [] | |
docs_url = [] | |
return docs_keep_as_doc, docs_content, docs_url | |
docs_keep_as_doc = [x[0] for x in docs_keep] | |
docs_keep_length = len(docs_keep_as_doc) | |
if docs_keep_length == 1: | |
content=[] | |
meta_url=[] | |
score=[] | |
for item in docs_keep: | |
content.append(item[0].page_content) | |
meta_url.append(item[0].metadata['source']) | |
score.append(item[1]) | |
# Create df from 'winning' passages | |
doc_df = pd.DataFrame(list(zip(content, meta_url, score)), | |
columns =['page_content', 'meta_url', 'score']) | |
docs_content = doc_df['page_content'].astype(str) | |
docs_url = doc_df['meta_url'] | |
return docs_keep_as_doc, docs_content, docs_url | |
# Check for if more docs are removed than the desired output | |
if out_passages > docs_keep_length: | |
out_passages = docs_keep_length | |
k_val = docs_keep_length | |
vec_rank = [*range(1, docs_keep_length+1)] | |
vec_score = [(docs_keep_length/x)*vec_weight for x in vec_rank] | |
# 2nd level check on retrieved docs with BM25 | |
content_keep=[] | |
for item in docs_keep: | |
content_keep.append(item[0].page_content) | |
corpus = corpus = [doc.lower().split() for doc in content_keep] | |
dictionary = Dictionary(corpus) | |
bm25_model = OkapiBM25Model(dictionary=dictionary) | |
bm25_corpus = bm25_model[list(map(dictionary.doc2bow, corpus))] | |
bm25_index = SparseMatrixSimilarity(bm25_corpus, num_docs=len(corpus), num_terms=len(dictionary), | |
normalize_queries=False, normalize_documents=False) | |
query = new_question_kworded.lower().split() | |
tfidf_model = TfidfModel(dictionary=dictionary, smartirs='bnn') # Enforce binary weighting of queries | |
tfidf_query = tfidf_model[dictionary.doc2bow(query)] | |
similarities = np.array(bm25_index[tfidf_query]) | |
#print(similarities) | |
temp = similarities.argsort() | |
ranks = np.arange(len(similarities))[temp.argsort()][::-1] | |
# Pair each index with its corresponding value | |
pairs = list(zip(ranks, docs_keep_as_doc)) | |
# Sort the pairs by the indices | |
pairs.sort() | |
# Extract the values in the new order | |
bm25_result = [value for ranks, value in pairs] | |
bm25_rank=[] | |
bm25_score = [] | |
for vec_item in docs_keep: | |
x = 0 | |
for bm25_item in bm25_result: | |
x = x + 1 | |
if bm25_item.page_content == vec_item[0].page_content: | |
bm25_rank.append(x) | |
bm25_score.append((docs_keep_length/x)*bm25_weight) | |
# 3rd level check on retrieved docs with SVM retriever | |
svm_retriever = SVMRetriever.from_texts(content_keep, embeddings, k = k_val) | |
svm_result = svm_retriever.get_relevant_documents(new_question_kworded) | |
svm_rank=[] | |
svm_score = [] | |
for vec_item in docs_keep: | |
x = 0 | |
for svm_item in svm_result: | |
x = x + 1 | |
if svm_item.page_content == vec_item[0].page_content: | |
svm_rank.append(x) | |
svm_score.append((docs_keep_length/x)*svm_weight) | |
## Calculate final score based on three ranking methods | |
final_score = [a + b + c for a, b, c in zip(vec_score, bm25_score, svm_score)] | |
final_rank = [sorted(final_score, reverse=True).index(x)+1 for x in final_score] | |
# Force final_rank to increment by 1 each time | |
final_rank = list(pd.Series(final_rank).rank(method='first')) | |
#print("final rank: " + str(final_rank)) | |
#print("out_passages: " + str(out_passages)) | |
best_rank_index_pos = [] | |
for x in range(1,out_passages+1): | |
try: | |
best_rank_index_pos.append(final_rank.index(x)) | |
except IndexError: # catch the error | |
pass | |
# Adjust best_rank_index_pos to | |
best_rank_pos_series = pd.Series(best_rank_index_pos) | |
docs_keep_out = [docs_keep[i] for i in best_rank_index_pos] | |
# Keep only 'best' options | |
docs_keep_as_doc = [x[0] for x in docs_keep_out] | |
# Make df of best options | |
doc_df = create_doc_df(docs_keep_out) | |
return docs_keep_as_doc, doc_df, docs_keep_out | |
def get_expanded_passages(vectorstore, docs, width): | |
""" | |
Extracts expanded passages based on given documents and a width for context. | |
Parameters: | |
- vectorstore: The primary data source. | |
- docs: List of documents to be expanded. | |
- width: Number of documents to expand around a given document for context. | |
Returns: | |
- expanded_docs: List of expanded Document objects. | |
- doc_df: DataFrame representation of expanded_docs. | |
""" | |
def get_docs_from_vstore(vectorstore): | |
vector = vectorstore.docstore._dict | |
return list(vector.items()) | |
def extract_details(docs_list): | |
docs_list_out = [tup[1] for tup in docs_list] | |
content = [doc.page_content for doc in docs_list_out] | |
meta = [doc.metadata for doc in docs_list_out] | |
return ''.join(content), meta[0], meta[-1] | |
def get_parent_content_and_meta(vstore_docs, width, target): | |
target_range = range(max(0, target - width), min(len(vstore_docs), target + width + 1)) | |
parent_vstore_out = [vstore_docs[i] for i in target_range] | |
content_str_out, meta_first_out, meta_last_out = [], [], [] | |
for _ in parent_vstore_out: | |
content_str, meta_first, meta_last = extract_details(parent_vstore_out) | |
content_str_out.append(content_str) | |
meta_first_out.append(meta_first) | |
meta_last_out.append(meta_last) | |
return content_str_out, meta_first_out, meta_last_out | |
def merge_dicts_except_source(d1, d2): | |
merged = {} | |
for key in d1: | |
if key != "source": | |
merged[key] = str(d1[key]) + " to " + str(d2[key]) | |
else: | |
merged[key] = d1[key] # or d2[key], based on preference | |
return merged | |
def merge_two_lists_of_dicts(list1, list2): | |
return [merge_dicts_except_source(d1, d2) for d1, d2 in zip(list1, list2)] | |
vstore_docs = get_docs_from_vstore(vectorstore) | |
parent_vstore_meta_section = [doc.metadata['page_section'] for _, doc in vstore_docs] | |
#print(docs) | |
expanded_docs = [] | |
for doc, score in docs: | |
search_section = doc.metadata['page_section'] | |
search_index = parent_vstore_meta_section.index(search_section) if search_section in parent_vstore_meta_section else -1 | |
content_str, meta_first, meta_last = get_parent_content_and_meta(vstore_docs, width, search_index) | |
#print("Meta first:") | |
#print(meta_first) | |
#print("Meta last:") | |
#print(meta_last) | |
#print("Meta last end.") | |
meta_full = merge_two_lists_of_dicts(meta_first, meta_last) | |
#print(meta_full) | |
expanded_doc = (Document(page_content=content_str[0], metadata=meta_full[0]), score) | |
expanded_docs.append(expanded_doc) | |
doc_df = create_doc_df(expanded_docs) # Assuming you've defined the 'create_doc_df' function elsewhere | |
return expanded_docs, doc_df | |
def create_final_prompt(inputs: Dict[str, str], instruction_prompt, content_prompt, extracted_memory): # , | |
question = inputs["question"] | |
chat_history = inputs["chat_history"] | |
new_question_kworded = adapt_q_from_chat_history(question, chat_history, extracted_memory) # new_question_keywords, | |
#print("The question passed to the vector search is:") | |
#print(new_question_kworded) | |
#docs_keep_as_doc, docs_content, docs_url = find_relevant_passages(new_question_kworded, k_val = 5, out_passages = 3, | |
# vec_score_cut_off = 1.3, vec_weight = 1, tfidf_weight = 0.5, svm_weight = 1) | |
docs_keep_as_doc, doc_df, docs_keep_out = hybrid_retrieval(new_question_kworded, k_val = 5, out_passages = 2, | |
vec_score_cut_off = 1, vec_weight = 1, bm25_weight = 1, svm_weight = 1)#, | |
#vectorstore=globals()["vectorstore"], embeddings=globals()["embeddings"]) | |
# Expand the found passages to the neighbouring context | |
docs_keep_as_doc, doc_df = get_expanded_passages(vectorstore, docs_keep_out, width=1) | |
if docs_keep_as_doc == []: | |
{"answer": "I'm sorry, I couldn't find a relevant answer to this question.", "sources":"I'm sorry, I couldn't find a relevant source for this question."} | |
#new_inputs = inputs.copy() | |
#new_inputs["question"] = new_question | |
#new_inputs["chat_history"] = chat_history_str | |
#print(docs_url) | |
#print(doc_df['metadata']) | |
# Build up sources content to add to user display | |
doc_df['meta_clean'] = [f"<b>{' '.join(f'{k}: {v}' for k, v in d.items() if k != 'page_section')}</b>" for d in doc_df['metadata']] | |
doc_df['content_meta'] = doc_df['meta_clean'].astype(str) + ".<br><br>" + doc_df['page_content'].astype(str) | |
modified_page_content = [f" SOURCE {i+1} - {word}" for i, word in enumerate(doc_df['page_content'])] | |
docs_content_string = ''.join(modified_page_content) | |
#docs_content_string = '<br><br>\n\n SOURCE '.join(doc_df['page_content'])#.replace(" "," ")#.strip() | |
sources_docs_content_string = '<br><br>'.join(doc_df['content_meta'])#.replace(" "," ")#.strip() | |
#sources_docs_content_tup = [(sources_docs_content,None)] | |
#print("The draft instruction prompt is:") | |
#print(instruction_prompt) | |
instruction_prompt_out = instruction_prompt.format(question=new_question_kworded, summaries=docs_content_string) | |
#print("The final instruction prompt:") | |
#print(instruction_prompt_out) | |
return instruction_prompt_out, sources_docs_content_string, new_question_kworded | |
def get_history_sources_final_input_prompt(user_input, history, extracted_memory):#): | |
#if chain_agent is None: | |
# history.append((user_input, "Please click the button to submit the Huggingface API key before using the chatbot (top right)")) | |
# return history, history, "", "" | |
print("\n==== date/time: " + str(datetime.datetime.now()) + " ====") | |
print("User input: " + user_input) | |
history = history or [] | |
# Create instruction prompt | |
instruction_prompt, content_prompt = create_prompt_templates() | |
instruction_prompt_out, docs_content_string, new_question_kworded =\ | |
create_final_prompt({"question": user_input, "chat_history": history}, #vectorstore, | |
instruction_prompt, content_prompt, extracted_memory) | |
history.append(user_input) | |
print("Output history is:") | |
print(history) | |
#print("The output prompt is:") | |
#print(instruction_prompt_out) | |
return history, docs_content_string, instruction_prompt_out | |
def highlight_found_text_single(search_text:str, full_text:str, hlt_chunk_size:int=hlt_chunk_size, hlt_strat:List=hlt_strat, hlt_overlap:int=hlt_overlap) -> str: | |
""" | |
Highlights occurrences of search_text within full_text. | |
Parameters: | |
- search_text (str): The text to be searched for within full_text. | |
- full_text (str): The text within which search_text occurrences will be highlighted. | |
Returns: | |
- str: A string with occurrences of search_text highlighted. | |
Example: | |
>>> highlight_found_text("world", "Hello, world! This is a test. Another world awaits.") | |
'Hello, <mark style="color:black;">world</mark>! This is a test. Another world awaits.' | |
""" | |
def extract_text_from_input(text,i=0): | |
if isinstance(text, str): | |
return text.replace(" ", " ").strip()#.replace("\r", " ").replace("\n", " ") | |
elif isinstance(text, list): | |
return text[i][0].replace(" ", " ").strip()#.replace("\r", " ").replace("\n", " ") | |
else: | |
return "" | |
def extract_search_text_from_input(text): | |
if isinstance(text, str): | |
return text.replace(" ", " ").strip()#.replace("\r", " ").replace("\n", " ").replace(" ", " ").strip() | |
elif isinstance(text, list): | |
return text[-1][1].replace(" ", " ").strip()#.replace("\r", " ").replace("\n", " ").replace(" ", " ").strip() | |
else: | |
return "" | |
full_text = extract_text_from_input(full_text) | |
search_text = extract_search_text_from_input(search_text) | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=hlt_chunk_size, | |
separators=hlt_strat, | |
chunk_overlap=hlt_overlap, | |
) | |
sections = text_splitter.split_text(search_text) | |
#print(sections) | |
found_positions = {} | |
for x in sections: | |
text_start_pos = full_text.find(x) | |
if text_start_pos != -1: | |
found_positions[text_start_pos] = text_start_pos + len(x) | |
# Combine overlapping or adjacent positions | |
sorted_starts = sorted(found_positions.keys()) | |
combined_positions = [] | |
if sorted_starts: | |
current_start, current_end = sorted_starts[0], found_positions[sorted_starts[0]] | |
for start in sorted_starts[1:]: | |
if start <= (current_end + 1): | |
current_end = max(current_end, found_positions[start]) | |
else: | |
combined_positions.append((current_start, current_end)) | |
current_start, current_end = start, found_positions[start] | |
combined_positions.append((current_start, current_end)) | |
# Construct pos_tokens | |
pos_tokens = [] | |
prev_end = 0 | |
for start, end in combined_positions: | |
pos_tokens.append(full_text[prev_end:start]) # ((full_text[prev_end:start], None)) | |
pos_tokens.append('<mark style="color:black;">' + full_text[start:end] + '</mark>')# ("<mark>" + full_text[start:end] + "</mark>",'found') | |
prev_end = end | |
pos_tokens.append(full_text[prev_end:]) | |
return "".join(pos_tokens) | |
def highlight_found_text(search_text: str, full_text: str, hlt_chunk_size:int=hlt_chunk_size, hlt_strat:List=hlt_strat, hlt_overlap:int=hlt_overlap) -> str: | |
""" | |
Highlights occurrences of search_text within full_text. | |
Parameters: | |
- search_text (str): The text to be searched for within full_text. | |
- full_text (str): The text within which search_text occurrences will be highlighted. | |
Returns: | |
- str: A string with occurrences of search_text highlighted. | |
Example: | |
>>> highlight_found_text("world", "Hello, world! This is a test. Another world awaits.") | |
'Hello, <mark style="color:black;">world</mark>! This is a test. Another <mark style="color:black;">world</mark> awaits.' | |
""" | |
def extract_text_from_input(text, i=0): | |
if isinstance(text, str): | |
return text.replace(" ", " ").strip() | |
elif isinstance(text, list): | |
return text[i][0].replace(" ", " ").strip() | |
else: | |
return "" | |
def extract_search_text_from_input(text): | |
if isinstance(text, str): | |
return text.replace(" ", " ").strip() | |
elif isinstance(text, list): | |
return text[-1][1].replace(" ", " ").strip() | |
else: | |
return "" | |
full_text = extract_text_from_input(full_text) | |
search_text = extract_search_text_from_input(search_text) | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=hlt_chunk_size, | |
separators=hlt_strat, | |
chunk_overlap=hlt_overlap, | |
) | |
sections = text_splitter.split_text(search_text) | |
found_positions = {} | |
for x in sections: | |
text_start_pos = 0 | |
while text_start_pos != -1: | |
text_start_pos = full_text.find(x, text_start_pos) | |
if text_start_pos != -1: | |
found_positions[text_start_pos] = text_start_pos + len(x) | |
text_start_pos += 1 | |
# Combine overlapping or adjacent positions | |
sorted_starts = sorted(found_positions.keys()) | |
combined_positions = [] | |
if sorted_starts: | |
current_start, current_end = sorted_starts[0], found_positions[sorted_starts[0]] | |
for start in sorted_starts[1:]: | |
if start <= (current_end + 10): | |
current_end = max(current_end, found_positions[start]) | |
else: | |
combined_positions.append((current_start, current_end)) | |
current_start, current_end = start, found_positions[start] | |
combined_positions.append((current_start, current_end)) | |
# Construct pos_tokens | |
pos_tokens = [] | |
prev_end = 0 | |
for start, end in combined_positions: | |
pos_tokens.append(full_text[prev_end:start]) | |
pos_tokens.append('<mark style="color:black;">' + full_text[start:end] + '</mark>') | |
prev_end = end | |
pos_tokens.append(full_text[prev_end:]) | |
return "".join(pos_tokens) | |
# # Chat functions | |
def produce_streaming_answer_chatbot_gpt4all(history, full_prompt): | |
print("The question is: ") | |
print(full_prompt) | |
# Pull the generated text from the streamer, and update the model output. | |
history[-1][1] = "" | |
for new_text in gpt4all_model.generate(full_prompt, max_tokens=2000, streaming=True): | |
if new_text == None: new_text = "" | |
history[-1][1] += new_text | |
yield history | |
def produce_streaming_answer_chatbot_hf(history, full_prompt): | |
#print("The question is: ") | |
#print(full_prompt) | |
# Get the model and tokenizer, and tokenize the user text. | |
model_inputs = tokenizer(text=full_prompt, return_tensors="pt").to(torch_device) | |
# Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer | |
# in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread. | |
streamer = TextIteratorStreamer(tokenizer, timeout=60., skip_prompt=True, skip_special_tokens=True) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=sample, | |
repetition_penalty=1.3, | |
top_p=top_p, | |
temperature=temperature, | |
top_k=top_k | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
# Pull the generated text from the streamer, and update the model output. | |
import time | |
start = time.time() | |
NUM_TOKENS=0 | |
print('-'*4+'Start Generation'+'-'*4) | |
history[-1][1] = "" | |
for new_text in streamer: | |
if new_text == None: new_text = "" | |
history[-1][1] += new_text | |
NUM_TOKENS+=1 | |
yield history | |
time_generate = time.time() - start | |
print('\n') | |
print('-'*4+'End Generation'+'-'*4) | |
print(f'Num of generated tokens: {NUM_TOKENS}') | |
print(f'Time for complete generation: {time_generate}s') | |
print(f'Tokens per secound: {NUM_TOKENS/time_generate}') | |
print(f'Time per token: {(time_generate/NUM_TOKENS)*1000}ms') | |
def produce_streaming_answer_chatbot_ctrans(history, full_prompt): | |
print("The question is: ") | |
print(full_prompt) | |
#tokens = ctrans_llm.tokenize(full_prompt) | |
#import psutil | |
#from loguru import logger | |
#_ = [elm for elm in full_prompt.splitlines() if elm.strip()] | |
#stop_string = [elm.split(":")[0] + ":" for elm in _][-2] | |
#print(stop_string) | |
#logger.debug(f"{stop_string=} not used") | |
#_ = psutil.cpu_count(logical=False) - 1 | |
#cpu_count: int = int(_) if _ else 1 | |
#logger.debug(f"{cpu_count=}") | |
# Pull the generated text from the streamer, and update the model output. | |
config = GenerationConfig(reset=True) | |
history[-1][1] = "" | |
for new_text in ctrans_generate(prompt=full_prompt, config=config): | |
if new_text == None: new_text = "" | |
history[-1][1] += new_text | |
yield history | |
class GenerationConfig: | |
temperature: float = temperature | |
top_k: int = top_k | |
top_p: float = top_p | |
repetition_penalty: float = repetition_penalty | |
last_n_tokens: int = last_n_tokens | |
max_new_tokens: int = max_new_tokens | |
#seed: int = 42 | |
reset: bool = reset | |
stream: bool = stream | |
threads: int = threads | |
batch_size:int = batch_size | |
#context_length:int = context_length | |
#gpu_layers:int = gpu_layers | |
#stop: list[str] = field(default_factory=lambda: [stop_string]) | |
def ctrans_generate( | |
prompt: str, | |
llm=ctrans_llm, | |
config: GenerationConfig = GenerationConfig(), | |
): | |
"""Run model inference, will return a Generator if streaming is true.""" | |
return llm( | |
prompt, | |
**asdict(config), | |
) | |
def turn_off_interactivity(user_message, history): | |
return gr.update(value="", interactive=False), history + [[user_message, None]] | |
# # Chat history functions | |
def clear_chat(chat_history_state, sources, chat_message, current_topic): | |
chat_history_state = [] | |
sources = '' | |
chat_message = '' | |
current_topic = '' | |
return chat_history_state, sources, chat_message, current_topic | |
def _get_chat_history(chat_history: List[Tuple[str, str]], max_chat_length:int = 20): # Limit to last x interactions only | |
if not chat_history: | |
chat_history = [] | |
if len(chat_history) > max_chat_length: | |
chat_history = chat_history[-max_chat_length:] | |
#print(chat_history) | |
first_q = "" | |
first_ans = "" | |
for human_s, ai_s in chat_history: | |
first_q = human_s | |
first_ans = ai_s | |
#print("Text to keyword extract: " + first_q + " " + first_ans) | |
break | |
conversation = "" | |
for human_s, ai_s in chat_history: | |
human = f"Human: " + human_s | |
ai = f"Assistant: " + ai_s | |
conversation += "\n" + "\n".join([human, ai]) | |
return conversation, first_q, first_ans, max_chat_length | |
def add_inputs_answer_to_history(user_message, history, current_topic): | |
#history.append((user_message, [-1])) | |
chat_history_str, chat_history_first_q, chat_history_first_ans, max_chat_length = _get_chat_history(history) | |
# Only get the keywords for the first question and response, or do it every time if over 'max_chat_length' responses in the conversation | |
if (len(history) == 1) | (len(history) > max_chat_length): | |
#print("History after appending is:") | |
#print(history) | |
first_q_and_first_ans = str(chat_history_first_q) + " " + str(chat_history_first_ans) | |
#ner_memory = remove_q_ner_extractor(first_q_and_first_ans) | |
keywords = keybert_keywords(first_q_and_first_ans, n = 8, kw_model=kw_model) | |
#keywords.append(ner_memory) | |
# Remove duplicate words while preserving order | |
ordered_tokens = set() | |
result = [] | |
for word in keywords: | |
if word not in ordered_tokens: | |
ordered_tokens.add(word) | |
result.append(word) | |
extracted_memory = ' '.join(result) | |
else: extracted_memory=current_topic | |
print("Extracted memory is:") | |
print(extracted_memory) | |
return history, extracted_memory | |
def remove_q_stopwords(question): # Remove stopwords from question. Not used at the moment | |
# Prepare keywords from question by removing stopwords | |
text = question.lower() | |
# Remove numbers | |
text = re.sub('[0-9]', '', text) | |
tokenizer = RegexpTokenizer(r'\w+') | |
text_tokens = tokenizer.tokenize(text) | |
#text_tokens = word_tokenize(text) | |
tokens_without_sw = [word for word in text_tokens if not word in stopwords] | |
# Remove duplicate words while preserving order | |
ordered_tokens = set() | |
result = [] | |
for word in tokens_without_sw: | |
if word not in ordered_tokens: | |
ordered_tokens.add(word) | |
result.append(word) | |
new_question_keywords = ' '.join(result) | |
return new_question_keywords | |
def remove_q_ner_extractor(question): | |
predict_out = ner_model.predict(question) | |
predict_tokens = [' '.join(v for k, v in d.items() if k == 'span') for d in predict_out] | |
# Remove duplicate words while preserving order | |
ordered_tokens = set() | |
result = [] | |
for word in predict_tokens: | |
if word not in ordered_tokens: | |
ordered_tokens.add(word) | |
result.append(word) | |
new_question_keywords = ' '.join(result).lower() | |
return new_question_keywords | |
def apply_lemmatize(text, wnl=WordNetLemmatizer()): | |
def prep_for_lemma(text): | |
# Remove numbers | |
text = re.sub('[0-9]', '', text) | |
print(text) | |
tokenizer = RegexpTokenizer(r'\w+') | |
text_tokens = tokenizer.tokenize(text) | |
#text_tokens = word_tokenize(text) | |
return text_tokens | |
tokens = prep_for_lemma(text) | |
def lem_word(word): | |
if len(word) > 3: out_word = wnl.lemmatize(word) | |
else: out_word = word | |
return out_word | |
return [lem_word(token) for token in tokens] | |
def keybert_keywords(text, n, kw_model): | |
tokens_lemma = apply_lemmatize(text) | |
lemmatised_text = ' '.join(tokens_lemma) | |
keywords_text = keybert.KeyBERT(model=kw_model).extract_keywords(lemmatised_text, stop_words='english', top_n=n, | |
keyphrase_ngram_range=(1, 1)) | |
keywords_list = [item[0] for item in keywords_text] | |
return keywords_list | |