File size: 20,296 Bytes
b7f29b3
 
41ec323
b7f29b3
87e8aba
41ec323
 
 
b7f29b3
0ad705b
 
 
 
 
 
 
 
 
87e8aba
 
 
0ad705b
 
 
 
 
52823c9
a97d3f8
87e8aba
 
a97d3f8
0ad705b
 
 
 
 
 
87e8aba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9278e06
 
 
87e8aba
b7f29b3
 
0ad705b
b7f29b3
 
 
0ad705b
 
 
 
 
b7f29b3
 
 
 
 
0ad705b
b7f29b3
0ad705b
b7f29b3
41ec323
0ad705b
41ec323
 
 
0ad705b
b7f29b3
 
0ad705b
41ec323
 
0ad705b
 
 
43fdc5b
 
41ec323
0083c1a
 
43fdc5b
41ec323
 
 
b7f29b3
0ad705b
 
 
 
57eea41
a97d3f8
87e8aba
 
57eea41
43fdc5b
 
 
 
 
 
 
 
 
0ad705b
 
43fdc5b
 
 
 
 
 
 
b7f29b3
0ad705b
 
 
 
b7f29b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ad705b
b7f29b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ad705b
 
 
 
 
b634085
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7f29b3
7151b09
0ad705b
 
 
 
7151b09
b634085
b7f29b3
 
0182410
 
b7f29b3
b634085
 
 
a97d3f8
b634085
 
 
0182410
b634085
 
0182410
7151b09
 
0ad705b
b7f29b3
7151b09
 
0182410
 
 
 
 
 
 
 
 
 
b634085
 
 
0182410
 
 
 
 
87e8aba
0182410
 
 
 
87e8aba
0182410
87e8aba
0182410
 
 
87e8aba
b7f29b3
 
87e8aba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
###########################################################################################
# Title:  Gradio Interface to LLM-chatbot with dynamic RAG-funcionality and ChromaDB
# Author: Andreas Fischer
# Date:   October 10th, 2024
# Last update: October 26th, 2024
##########################################################################################

import os
import torch
from transformers import AutoTokenizer, AutoModel # chromaDB
from datetime import datetime, date #add_doc, 
import chromadb #chromaDB
from chromadb import Documents, EmbeddingFunction, Embeddings #chromaDB
from chromadb.utils import embedding_functions #chromaDB
import ocrmypdf #convertPDF
from pypdf import PdfReader #convertPDF
import re #format_prompt
import gradio as gr # multimodal_response
from huggingface_hub import InferenceClient # multimodal_response
import json # multimodal_response (on-prem)
import requests # multimodal_response (on-prem)

#---------------------------------------------------
# Specify models for text generation and embeddings
#---------------------------------------------------

myModel="mistralai/Mixtral-8x7b-instruct-v0.1"
#myModel="meta-llama/Llama-3.1-8B-Instruct"
#myModel="QuantFactory/gemma-2-9b-it-SimPO-GGUF"
#myModel="bartowski/gemma-2-9b-it-GGUF"
#mod=myModel
#tok=AutoTokenizer.from_pretrained(mod) #,token="hf_...")
#cha=[{"role":"system","content":"A"},{"role":"user","content":"B"},{"role":"assistant","content":"C"}]
#cha=[{"role":"user","content":"U1"},{"role":"assistant","content":"A1"},{"role":"user","content":"U2"},{"role":"assistant","content":"A2"}]
#res=tok.apply_chat_template(cha)
#print(tok.decode(res))

if("GGUF" in myModel): # start Llama-cpp-server for GGUF-models on premises:
  #modelPath="/home/af/gguf/models/bartowski/gemma-2-9b-it-GGUF/gemma-2-9b-it-Q4_K_M.gguf"
  modelPath="/home/af/gguf/models/QuantFactory/gemma-2-9b-it-SimPO-GGUF/gemma-2-9b-it-SimPO.Q4_K_M.gguf"
  if(os.path.exists(modelPath)==False):
    #url="https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/resolve/main/gemma-2-9b-it-Q4_K_M.gguf?download=true"
    url="https://huggingface.co/QuantFactory/gemma-2-9b-it-SimPO-GGUF/resolve/main/gemma-2-9b-it-SimPO.Q4_K_M.gguf?download=true"
    response = requests.get(url)
    with open("./model.gguf", mode="wb") as file:
      file.write(response.content)
    print("Model downloaded")  
    modelPath="./model.gguf"
  print(modelPath)
  import subprocess
  command = ["python3", "-m", "llama_cpp.server", "--model", modelPath, "--host", "0.0.0.0", "--port", "2600", "--n_threads", "4", "--n_gpu_layers","42"] #20
  subprocess.Popen(command)
  print("Server ready!")

#url="http://0.0.0.0:2600/v1/completions"  
#body={"prompt":"test","max_tokens":1000, "echo":"False","stream":"False"} #e.g. Mixtral-Instruct
#test=requests.post(url, json=body, stream=False)
  
jina = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True, torch_dtype=torch.bfloat16)
#jira.save_pretrained("jinaai_jina-embeddings-v2-base-de")   
device='cuda:0' if torch.cuda.is_available() else 'cpu'
jina.to(device) #cuda:0
print(device)


#-----------------
# ChromaDB-client
#-----------------
 
class JinaEmbeddingFunction(EmbeddingFunction):
  def __call__(self, input: Documents) -> Embeddings:    
    embeddings = jina.encode(input) #max_length=2048
    return(embeddings.tolist())

dbPath = "/home/af/Schreibtisch/Code/gradio/Chroma/db/" 
onPrem = True if(os.path.exists(dbPath)) else False 
if(onPrem==False): dbPath="/home/user/app/db/"

print(dbPath)
client = chromadb.PersistentClient(path=dbPath)
print(client.heartbeat()) 
print(client.get_version())  
print(client.list_collections()) 

jina_ef=JinaEmbeddingFunction()
embeddingModel=jina_ef
databases=[(date.today(),"0")] # start a list of databases


#---------------------------------------------------------------------
# Function for formatting single message according to prompt template
#---------------------------------------------------------------------

def format_prompt0(message, history):
  prompt = "<s>"
  #for user_prompt, bot_response in history:
  #  prompt += f"[INST] {user_prompt} [/INST]"
  #  prompt += f" {bot_response}</s> "  
  prompt += f"[INST] {message} [/INST]"
  return prompt


#-------------------------------------------------------------------------
# Function for formatting multiturn-dialogue according to prompt template
#-------------------------------------------------------------------------

def format_prompt(message, history=None, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4, removeHTML=False,
  startOfString="<s>", template0=" [INST] {system} [/INST] </s>",template1=" [INST] {message} [/INST]",template2=" {response}</s>"): # mistralai/Mixtral-8x7B-Instruct-v0.1
  #startOfString="<bos>",template0="<start_of_turn>user\n{system}<end_of_turn>\n<start_of_turn>model\n<end_of_turn>\n",template1="<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n",template2="{response}<end_of_turn>\n"): # google/gemma-2-2b-it
  #startOfString="<|begin_of_text|><", template0="<|start_header_id|>system<|end_header_id|>\n\nCutting Knowledge Date: December 2023\nToday Date: 26 Jul 2024\n\n{system}\n<|eot_id|>", template1="<|start_header_id|>user<|end_header_id|>\n\n{message}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", template2="{response}</eot_id>"): # meta-llama/Llama-3.1-8B-Instruct
  if zeichenlimit is None: zeichenlimit=1000000000 # :-)  
  prompt = ""
  if RAGAddon is not None:
    system += RAGAddon
  if system is not None:
    prompt += template0.format(system=system) #"<s>"
  if history is not None:
    for user_message, bot_response in history[-historylimit:]:
      if user_message is None: user_message = "" 
      if bot_response is None: bot_response = ""
      bot_response = re.sub("\n\n<details>((.|\n)*?)</details>","", bot_response) # remove RAG-compontents
      if removeHTML==True: bot_response = re.sub("<(.*?)>","\n", bot_response)    # remove HTML-components in general (may cause bugs with markdown-rendering)
      if user_message is not None: prompt += template1.format(message=user_message[:zeichenlimit])  
      if bot_response is not None: prompt += template2.format(response=bot_response[:zeichenlimit]) 
  if message is not None: prompt += template1.format(message=message[:zeichenlimit])                
  if system2 is not None:
    prompt += system2
  return startOfString+prompt


#--------------------------------------------
# Function for converting pdf-files to text
#--------------------------------------------

def convertPDF(pdf_file, allow_ocr=False):
    reader = PdfReader(pdf_file)
    full_text = ""
    page_list = []       
    def extract_text_from_pdf(reader):
        full_text = ""
        page_list = []
        page_count = 1
        for idx, page in enumerate(reader.pages):
            text = page.extract_text()
            if len(text) > 0:
                page_list.append(text)
                #full_text += f"---- Page {idx} ----\n" + text + "\n\n"
                page_count += 1    
        return full_text.strip(), page_count, page_list
    # Check if there are any images
    image_count = sum(len(page.images) for page in reader.pages)
    # If there are images and not much content, you may want to perform OCR on the document
    if allow_ocr:
        print(f"{image_count} Images") 
        if image_count > 0 and len(full_text) < 1000:
            out_pdf_file = pdf_file.replace(".pdf", "_ocr.pdf")
            ocrmypdf.ocr(pdf_file, out_pdf_file, force_ocr=True)        
            reader = PdfReader(out_pdf_file)
    # Extract text:
    full_text, page_count, page_list = extract_text_from_pdf(reader)
    l = len(page_list)
    print(f"{l} Pages")
    # Extract metadata
    metadata = {
        "author": reader.metadata.author,
        "creator": reader.metadata.creator,
        "producer": reader.metadata.producer,
        "subject": reader.metadata.subject,
        "title": reader.metadata.title,
        "image_count": image_count,
        "page_count": page_count,
        "char_count": len(full_text),
    }    
    return page_list, full_text, metadata


#------------------------------------------
# Function for splitting text with overlap
#------------------------------------------

def split_with_overlap0(text,chunk_size=3500, overlap=700):
  """ Split text in chunks based on number of characters (chunk_size) with chunks overlapping (overlap)"""
  chunks=[]
  step=max(1,chunk_size-overlap)
  for i in range(0,len(text),step):
    end=min(i+chunk_size,len(text))
    chunks.append(text[i:end])
  return chunks

import re
def split_with_overlap(text, chunk_size=3500, overlap=700, pattern=r'([.!;?][ \n\r]|[\n\r]{2,})', variant=1, verbose=False):
    """ Split text in chunks based on regex (pattern) matches. By default the pattern is '([.!;?][ \\n\\r]|[\\n\\r]{2,})' Chunks are no longer than a certain number of characters (chunk_size) with chunks overlapping (overlap).
     By default (variant=1) chunking is based on complete sentences, but it's also possible to split only within the left overlap region and within the rest of the chunk-size (variant==2) or strictly within both overlap-regions (variant=3).    
    """
    chunks = []
    overlap=min(overlap,chunk_size) # Overlap kann nicht größer sein als chunk_size
    step = max(1, chunk_size - overlap) # step richtet sich nach chunk_size und overlap
    def find_pattern(text): # Funktion zur Suche nach dem Muster
        return re.search(pattern, text)
    i, lastEnd = 0,0
    while i<len(text):
      print("i="+str(i))
      end = min(i + chunk_size, len(text)) 
      pattern_match = find_pattern(text[i:end]) # erstes Vorkommnis (if any)
      matchesStart = [x.start() for x in re.finditer(pattern, text[i:end])] # start aller matches
      matchesEnd =   [x.start() for x in re.finditer(pattern, text[i:end])] # end aller matches
      step = max(1, chunk_size - overlap) # Normalerweise beträgt ein Step chunk_size - overlap     
      if pattern_match: # Wenn (mindestens) ein Satzzeichen gefunden wurde        
        for s in matchesStart: # gehe jedes Satzzeichen durch
          if ((variant<=2 and s>=overlap) or (variant==3 and s>=overlap and s>(chunk_size-overlap))): # wenn das Satzzeichen nicht im Overlap links liegt (1) oder zusätzlich im reechten Overlap liegt (2) - wobei letzteres unvollständige Sätze bedeuten kann
            end=s+i+1 # Setze end auf den Start des Patterns/Satzzeichens im gesamten Text
            if(verbose==True): print("***move end:"+str(end)+"; step="+str(step))
            if(s<(chunk_size-overlap)):step=min(step,max(1,s-overlap)) # Springe mit step höchstens zum Ende des Satzzeichens (nur erforderlich, wenn end nicht im Overlap)
        if ((variant==1 and i>0) or (variant>=2 and pattern_match.start()<overlap and i>0)): # wenn das erste Satzzeichen im Overlap liegt
          i=i+pattern_match.start()+1     # Verzichte auf Textteile vor dem ersten Satzzeichen                               
      if(verbose==True): print("i="+str(i)+"; end="+str(end)+"; step="+str(step)+"; len="+str(len(text))+"; match="+str(pattern_match)+"; text="+text[i:end]+"; rest="+text[end:])
      if(end>lastEnd): # wenn das Ende sich verschoben hat (und nicht nur den Satzbeginn zu einem bereits bekannten Satz abschneidet)
        chunks.append(text[i:end])        
      lastEnd=end
      if(verbose==True): print("Text at position "+str(i)+": "+text[i:end])
      i += step
    if(len(text[end:])>0): chunks.append(text[end:]) # Ergänze am ende etwaigen Rest 
    return chunks

fiveChars=  "(?<![ \n\(]bspw|[ \n]inkl)"
fourChars=  "(?<![ \n\(]sog|[ \n]Mio|[ \n]Mrd|[ \n]Tsd|[ \n]Tel)" 
threeChars= "(?<!www|bzw|etc|ggf|[ \n\(]al|[ \n\(]St|[ \n\(]dh|[ \n\(]va|[ \n\(]ca|[ \n\(]Dr|[ \n\(]Hr|[ \n\(]Fr|[0-9]ff)"
twoChars=   "(?<![ \n\(][A-Za-zΆ-Ωά-ωäöüß])"
oneChars=   "(?<![0-9.])"
sentenceRegex="(?<=[^.]{4})"+fiveChars+fourChars+threeChars+twoChars+oneChars+"[.?!](?![A-Za-zΆ-Ωά-ωäöüß0-9.!?'\"])"
sectionRegex="\n[ ]*\n[\n ]*"
splitRegex="("+sentenceRegex+"|"+sectionRegex+")"


#---------------------------------------------------------------
# Function for adding docs to ChromaDB and/or return collection
#---------------------------------------------------------------

def add_doc(path, session):
  global device
  print("def add_doc!")
  print(path)
  anhang=False
  if(str.lower(path).endswith(".pdf") and os.path.exists(path)):
      doc=convertPDF(path)
      if(len(doc[0])>5):         
        if(not "cuda" in device):
          doc="\n\n".join(doc[0][0:5]) 
          gr.Info("PDF uploaded to DB_"+str(session)+", start Indexing excerpt (demo-mode: first 5 pages on CPU setups)!")
        else:
          doc="\n\n".join(doc[0]) 
          gr.Info("PDF uploaded to DB_"+str(session)+", start Indexing!")                
      else:
        doc="\n\n".join(doc[0]) 
        gr.Info("PDF uploaded to DB_"+str(session)+", start Indexing!")                 
      anhang=True
  else:
    gr.Info("No PDF attached - answer based on DB_"+str(session)+".")          
  client = chromadb.PersistentClient(path=dbPath)
  print(str(client.list_collections()))
  print(str(session))
  dbName="DB_"+str(session)
  if(not "name="+dbName in str(client.list_collections())): 
    #  client.delete_collection(name=dbName) 
    collection = client.create_collection(
      name=dbName,
      embedding_function=embeddingModel,
      metadata={"hnsw:space": "cosine"})
  else:
    collection = client.get_collection(
      name=dbName, embedding_function=embeddingModel)
  if(anhang==True):
    corpus=split_with_overlap(doc,3500,700,pattern=splitRegex) 
    print("Length of corpus: "+str(len(corpus)))
    print("Corpus:"+str(corpus))
    then = datetime.now()
    x=collection.get(include=[])["ids"]
    print(len(x))
    if(len(x)==0):
      chunkSize=40000
      for i in range(round(len(corpus)/chunkSize+0.5)): #0 is first batch, 3 is last (incomplete) batch given 133497 texts
        print("embed batch "+str(i)+" of "+str(round(len(corpus)/chunkSize+0.5)))
        ids=list(range(i*chunkSize,(i*chunkSize+chunkSize)))
        batch=corpus[i*chunkSize:(i*chunkSize+chunkSize)]
        textIDs=[str(id) for id in ids[0:len(batch)]]
        ids=[str(id+len(x)+1) for id in ids[0:len(batch)]] # id refers to chromadb-unique ID      
        collection.add(documents=batch, ids=ids, 
          metadatas=[{"date": str("2024-10-10")} for b in batch]) #"textID":textIDs, "id":ids, 
        print("finished batch "+str(i)+" of "+str(round(len(corpus)/40000+0.5)))  
    now = datetime.now()
    gr.Info(f"Indexing complete!")
    print(now-then) #zu viel GB für sentences (GPU), bzw. 0:00:10.375087 für chunks
  return(collection)


#--------------------------------------------------------
# Function for response to user queries and pot. addenda
#--------------------------------------------------------

def multimodal_response(message, history, dropdown, hfToken, request: gr.Request):
  print("def multimodal response!")
  if(hfToken.startswith("hf_")): # use HF-hub with custom token if token is provided
    inferenceClient = InferenceClient(model=myModel, token=hfToken)
  else:
    inferenceClient = InferenceClient(myModel)  
  global databases
  if request:
    session=request.session_hash
  else:
    session="0"
  length=str(len(history))
  print(databases)
  if(not databases[-1][1]==session):
    databases.append((date.today(),session))
    #print(databases)
  query=message["text"]
  if(len(message["files"])>0): # is there at least one file attached?
    collection=add_doc(message["files"][0], session)
  else: # otherwise, you still want to get the collection with the session-based db
    collection=add_doc(message["text"], session)
  client = chromadb.PersistentClient(path=dbPath)
  print(str(client.list_collections()))
  x=collection.get(include=[])["ids"] 
  ragQuery=[format_prompt(query, history, historylimit=2,
    #startOfString="", template0="{system}\n",template1="USER: {message}\n\n",template2="ASSISTANT: {response}\n\n") if len(history)>0 else query] # embed simply-formated dialogue
    startOfString="", template1="{message}\n\n",template2="") if len(history)>0 else query] # embed simple string of User-queries only
  context=collection.query(query_texts=ragQuery, n_results=3)
  #context=["<Kontext "+str(i)+"> "+str(c)+"</Kontext "+str(i)+">" for i,c in enumerate(context["documents"][0])] 
  context=["Kontext "+str(i+1)+": \""+re.sub("\"","'",str(c))+"\"" for i,c in enumerate(context["documents"][0])]
  gr.Info("Kontext:\n"+str(context))    
  generate_kwargs = dict(
        temperature=float(0.9),
        max_new_tokens=5000,
        top_p=0.95,
        repetition_penalty=1.0,
        do_sample=True,
        seed=42,
  )
  system="Mit Blick auf das folgende Gespräch und den relevanten Kontext, antworte auf die aktuelle Frage des Nutzers. "+\
  "Antworte ausschließlich auf Basis der Informationen im Kontext.\n\nKontext:\n\n"+\
  str("\n\n".join(context))
  #"Given the following conversation, relevant context, and a follow up question, "+\
  #"reply with an answer to the current question the user is asking. "+\
  #"Return only your response to the question given the above information "+\
  #"following the users instructions as needed.\n\nContext:"+\
  print(system)
  #formatted_prompt = format_prompt0(system+"\n"+query, history)
  formatted_prompt = format_prompt(query, history,system=system)
  print(formatted_prompt)
  output = ""
  if(not "GGUF" in myModel):  
    try:
      stream = inferenceClient.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)    
      for response in stream:
        output += response.token.text
        yield output
    except Exception as e:
      output = "Für weitere Antworten von der KI gebe bitte einen gültigen HuggingFace-Token an."
      if(len(context)>0): 
        output += "\nBis dahin helfen dir hoffentlich die folgenden Quellen weiter:"
      yield output
      print(str(e))
  else:
    try:
      #generate_kwargs["prompt"]=formatted_prompt #
      generate_kwargs={"prompt":formatted_prompt,"max_tokens":1000, "echo":"False","stream":"True"} #e.g. Mixtral-Instruct    
      url="http://0.0.0.0:2600/v1/completions"  
      response=""
      buffer=""
      print("URL: "+url)
      print("User: "+str(message)+"\nAssistant: ")
      for text in requests.post(url, json=generate_kwargs, stream=True):  #-H 'accept: application/json' -H 'Content-Type: application/json'
        if buffer is None: buffer=""
        buffer=str("".join(buffer))
        text=text.decode('utf-8')
        if((text.startswith(": ping -")==False) & (len(text.strip("\n\r"))>0)): buffer=buffer+str(text)
        buffer=buffer.split('"finish_reason": null}]}')
        if(len(buffer)==1):
          buffer="".join(buffer)
          pass
        if(len(buffer)==2):
          part=buffer[0]+'"finish_reason": null}]}'  
          if(part.lstrip('\n\r').startswith("data: ")): part=part.lstrip('\n\r').replace("data: ", "")
          try: 
            part = str(json.loads(part)["choices"][0]["text"])
            print(part, end="", flush=True)
            output += part
            buffer="" 
          except Exception as e:
            print("Exception:"+str(e))
            pass
        yield output         
    except Exception as e:
      output = "Die KI antwortet gerade nicht."
      if(len(context)>0): 
        output += "\nBis dahin helfen dir hoffentlich die folgenden Quellen weiter:"
      yield output
      print(str(e))
  if(len(context)>0):
    output=output+"\n\n<br><details open><summary><strong>Quellen</strong></summary><br><ul>"+ "".join(["<li>" + c + "</li>" for c in context])+"</ul></details>"
  yield output

#------------------------------
# Launch Gradio-ChatInterface
#------------------------------


i=gr.ChatInterface(multimodal_response,
  title="Frag dein PDF",
  multimodal=True,
  additional_inputs=[
    gr.Dropdown(
      info="Wähle eine Variante",
      choices=["1","2","3"],
      value="1",
      label="Variante"),
           gr.Textbox(
      value="",
      label="HF_token"),   
  ])
i.launch() #allowed_paths=["."])