Spaces:
Running
Running
File size: 20,296 Bytes
b7f29b3 41ec323 b7f29b3 87e8aba 41ec323 b7f29b3 0ad705b 87e8aba 0ad705b 52823c9 a97d3f8 87e8aba a97d3f8 0ad705b 87e8aba 9278e06 87e8aba b7f29b3 0ad705b b7f29b3 0ad705b b7f29b3 0ad705b b7f29b3 0ad705b b7f29b3 41ec323 0ad705b 41ec323 0ad705b b7f29b3 0ad705b 41ec323 0ad705b 43fdc5b 41ec323 0083c1a 43fdc5b 41ec323 b7f29b3 0ad705b 57eea41 a97d3f8 87e8aba 57eea41 43fdc5b 0ad705b 43fdc5b b7f29b3 0ad705b b7f29b3 0ad705b b7f29b3 0ad705b b634085 b7f29b3 7151b09 0ad705b 7151b09 b634085 b7f29b3 0182410 b7f29b3 b634085 a97d3f8 b634085 0182410 b634085 0182410 7151b09 0ad705b b7f29b3 7151b09 0182410 b634085 0182410 87e8aba 0182410 87e8aba 0182410 87e8aba 0182410 87e8aba b7f29b3 87e8aba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
###########################################################################################
# Title: Gradio Interface to LLM-chatbot with dynamic RAG-funcionality and ChromaDB
# Author: Andreas Fischer
# Date: October 10th, 2024
# Last update: October 26th, 2024
##########################################################################################
import os
import torch
from transformers import AutoTokenizer, AutoModel # chromaDB
from datetime import datetime, date #add_doc,
import chromadb #chromaDB
from chromadb import Documents, EmbeddingFunction, Embeddings #chromaDB
from chromadb.utils import embedding_functions #chromaDB
import ocrmypdf #convertPDF
from pypdf import PdfReader #convertPDF
import re #format_prompt
import gradio as gr # multimodal_response
from huggingface_hub import InferenceClient # multimodal_response
import json # multimodal_response (on-prem)
import requests # multimodal_response (on-prem)
#---------------------------------------------------
# Specify models for text generation and embeddings
#---------------------------------------------------
myModel="mistralai/Mixtral-8x7b-instruct-v0.1"
#myModel="meta-llama/Llama-3.1-8B-Instruct"
#myModel="QuantFactory/gemma-2-9b-it-SimPO-GGUF"
#myModel="bartowski/gemma-2-9b-it-GGUF"
#mod=myModel
#tok=AutoTokenizer.from_pretrained(mod) #,token="hf_...")
#cha=[{"role":"system","content":"A"},{"role":"user","content":"B"},{"role":"assistant","content":"C"}]
#cha=[{"role":"user","content":"U1"},{"role":"assistant","content":"A1"},{"role":"user","content":"U2"},{"role":"assistant","content":"A2"}]
#res=tok.apply_chat_template(cha)
#print(tok.decode(res))
if("GGUF" in myModel): # start Llama-cpp-server for GGUF-models on premises:
#modelPath="/home/af/gguf/models/bartowski/gemma-2-9b-it-GGUF/gemma-2-9b-it-Q4_K_M.gguf"
modelPath="/home/af/gguf/models/QuantFactory/gemma-2-9b-it-SimPO-GGUF/gemma-2-9b-it-SimPO.Q4_K_M.gguf"
if(os.path.exists(modelPath)==False):
#url="https://huggingface.co/bartowski/gemma-2-9b-it-GGUF/resolve/main/gemma-2-9b-it-Q4_K_M.gguf?download=true"
url="https://huggingface.co/QuantFactory/gemma-2-9b-it-SimPO-GGUF/resolve/main/gemma-2-9b-it-SimPO.Q4_K_M.gguf?download=true"
response = requests.get(url)
with open("./model.gguf", mode="wb") as file:
file.write(response.content)
print("Model downloaded")
modelPath="./model.gguf"
print(modelPath)
import subprocess
command = ["python3", "-m", "llama_cpp.server", "--model", modelPath, "--host", "0.0.0.0", "--port", "2600", "--n_threads", "4", "--n_gpu_layers","42"] #20
subprocess.Popen(command)
print("Server ready!")
#url="http://0.0.0.0:2600/v1/completions"
#body={"prompt":"test","max_tokens":1000, "echo":"False","stream":"False"} #e.g. Mixtral-Instruct
#test=requests.post(url, json=body, stream=False)
jina = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-base-de', trust_remote_code=True, torch_dtype=torch.bfloat16)
#jira.save_pretrained("jinaai_jina-embeddings-v2-base-de")
device='cuda:0' if torch.cuda.is_available() else 'cpu'
jina.to(device) #cuda:0
print(device)
#-----------------
# ChromaDB-client
#-----------------
class JinaEmbeddingFunction(EmbeddingFunction):
def __call__(self, input: Documents) -> Embeddings:
embeddings = jina.encode(input) #max_length=2048
return(embeddings.tolist())
dbPath = "/home/af/Schreibtisch/Code/gradio/Chroma/db/"
onPrem = True if(os.path.exists(dbPath)) else False
if(onPrem==False): dbPath="/home/user/app/db/"
print(dbPath)
client = chromadb.PersistentClient(path=dbPath)
print(client.heartbeat())
print(client.get_version())
print(client.list_collections())
jina_ef=JinaEmbeddingFunction()
embeddingModel=jina_ef
databases=[(date.today(),"0")] # start a list of databases
#---------------------------------------------------------------------
# Function for formatting single message according to prompt template
#---------------------------------------------------------------------
def format_prompt0(message, history):
prompt = "<s>"
#for user_prompt, bot_response in history:
# prompt += f"[INST] {user_prompt} [/INST]"
# prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
#-------------------------------------------------------------------------
# Function for formatting multiturn-dialogue according to prompt template
#-------------------------------------------------------------------------
def format_prompt(message, history=None, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4, removeHTML=False,
startOfString="<s>", template0=" [INST] {system} [/INST] </s>",template1=" [INST] {message} [/INST]",template2=" {response}</s>"): # mistralai/Mixtral-8x7B-Instruct-v0.1
#startOfString="<bos>",template0="<start_of_turn>user\n{system}<end_of_turn>\n<start_of_turn>model\n<end_of_turn>\n",template1="<start_of_turn>user\n{message}<end_of_turn>\n<start_of_turn>model\n",template2="{response}<end_of_turn>\n"): # google/gemma-2-2b-it
#startOfString="<|begin_of_text|><", template0="<|start_header_id|>system<|end_header_id|>\n\nCutting Knowledge Date: December 2023\nToday Date: 26 Jul 2024\n\n{system}\n<|eot_id|>", template1="<|start_header_id|>user<|end_header_id|>\n\n{message}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n", template2="{response}</eot_id>"): # meta-llama/Llama-3.1-8B-Instruct
if zeichenlimit is None: zeichenlimit=1000000000 # :-)
prompt = ""
if RAGAddon is not None:
system += RAGAddon
if system is not None:
prompt += template0.format(system=system) #"<s>"
if history is not None:
for user_message, bot_response in history[-historylimit:]:
if user_message is None: user_message = ""
if bot_response is None: bot_response = ""
bot_response = re.sub("\n\n<details>((.|\n)*?)</details>","", bot_response) # remove RAG-compontents
if removeHTML==True: bot_response = re.sub("<(.*?)>","\n", bot_response) # remove HTML-components in general (may cause bugs with markdown-rendering)
if user_message is not None: prompt += template1.format(message=user_message[:zeichenlimit])
if bot_response is not None: prompt += template2.format(response=bot_response[:zeichenlimit])
if message is not None: prompt += template1.format(message=message[:zeichenlimit])
if system2 is not None:
prompt += system2
return startOfString+prompt
#--------------------------------------------
# Function for converting pdf-files to text
#--------------------------------------------
def convertPDF(pdf_file, allow_ocr=False):
reader = PdfReader(pdf_file)
full_text = ""
page_list = []
def extract_text_from_pdf(reader):
full_text = ""
page_list = []
page_count = 1
for idx, page in enumerate(reader.pages):
text = page.extract_text()
if len(text) > 0:
page_list.append(text)
#full_text += f"---- Page {idx} ----\n" + text + "\n\n"
page_count += 1
return full_text.strip(), page_count, page_list
# Check if there are any images
image_count = sum(len(page.images) for page in reader.pages)
# If there are images and not much content, you may want to perform OCR on the document
if allow_ocr:
print(f"{image_count} Images")
if image_count > 0 and len(full_text) < 1000:
out_pdf_file = pdf_file.replace(".pdf", "_ocr.pdf")
ocrmypdf.ocr(pdf_file, out_pdf_file, force_ocr=True)
reader = PdfReader(out_pdf_file)
# Extract text:
full_text, page_count, page_list = extract_text_from_pdf(reader)
l = len(page_list)
print(f"{l} Pages")
# Extract metadata
metadata = {
"author": reader.metadata.author,
"creator": reader.metadata.creator,
"producer": reader.metadata.producer,
"subject": reader.metadata.subject,
"title": reader.metadata.title,
"image_count": image_count,
"page_count": page_count,
"char_count": len(full_text),
}
return page_list, full_text, metadata
#------------------------------------------
# Function for splitting text with overlap
#------------------------------------------
def split_with_overlap0(text,chunk_size=3500, overlap=700):
""" Split text in chunks based on number of characters (chunk_size) with chunks overlapping (overlap)"""
chunks=[]
step=max(1,chunk_size-overlap)
for i in range(0,len(text),step):
end=min(i+chunk_size,len(text))
chunks.append(text[i:end])
return chunks
import re
def split_with_overlap(text, chunk_size=3500, overlap=700, pattern=r'([.!;?][ \n\r]|[\n\r]{2,})', variant=1, verbose=False):
""" Split text in chunks based on regex (pattern) matches. By default the pattern is '([.!;?][ \\n\\r]|[\\n\\r]{2,})' Chunks are no longer than a certain number of characters (chunk_size) with chunks overlapping (overlap).
By default (variant=1) chunking is based on complete sentences, but it's also possible to split only within the left overlap region and within the rest of the chunk-size (variant==2) or strictly within both overlap-regions (variant=3).
"""
chunks = []
overlap=min(overlap,chunk_size) # Overlap kann nicht größer sein als chunk_size
step = max(1, chunk_size - overlap) # step richtet sich nach chunk_size und overlap
def find_pattern(text): # Funktion zur Suche nach dem Muster
return re.search(pattern, text)
i, lastEnd = 0,0
while i<len(text):
print("i="+str(i))
end = min(i + chunk_size, len(text))
pattern_match = find_pattern(text[i:end]) # erstes Vorkommnis (if any)
matchesStart = [x.start() for x in re.finditer(pattern, text[i:end])] # start aller matches
matchesEnd = [x.start() for x in re.finditer(pattern, text[i:end])] # end aller matches
step = max(1, chunk_size - overlap) # Normalerweise beträgt ein Step chunk_size - overlap
if pattern_match: # Wenn (mindestens) ein Satzzeichen gefunden wurde
for s in matchesStart: # gehe jedes Satzzeichen durch
if ((variant<=2 and s>=overlap) or (variant==3 and s>=overlap and s>(chunk_size-overlap))): # wenn das Satzzeichen nicht im Overlap links liegt (1) oder zusätzlich im reechten Overlap liegt (2) - wobei letzteres unvollständige Sätze bedeuten kann
end=s+i+1 # Setze end auf den Start des Patterns/Satzzeichens im gesamten Text
if(verbose==True): print("***move end:"+str(end)+"; step="+str(step))
if(s<(chunk_size-overlap)):step=min(step,max(1,s-overlap)) # Springe mit step höchstens zum Ende des Satzzeichens (nur erforderlich, wenn end nicht im Overlap)
if ((variant==1 and i>0) or (variant>=2 and pattern_match.start()<overlap and i>0)): # wenn das erste Satzzeichen im Overlap liegt
i=i+pattern_match.start()+1 # Verzichte auf Textteile vor dem ersten Satzzeichen
if(verbose==True): print("i="+str(i)+"; end="+str(end)+"; step="+str(step)+"; len="+str(len(text))+"; match="+str(pattern_match)+"; text="+text[i:end]+"; rest="+text[end:])
if(end>lastEnd): # wenn das Ende sich verschoben hat (und nicht nur den Satzbeginn zu einem bereits bekannten Satz abschneidet)
chunks.append(text[i:end])
lastEnd=end
if(verbose==True): print("Text at position "+str(i)+": "+text[i:end])
i += step
if(len(text[end:])>0): chunks.append(text[end:]) # Ergänze am ende etwaigen Rest
return chunks
fiveChars= "(?<![ \n\(]bspw|[ \n]inkl)"
fourChars= "(?<![ \n\(]sog|[ \n]Mio|[ \n]Mrd|[ \n]Tsd|[ \n]Tel)"
threeChars= "(?<!www|bzw|etc|ggf|[ \n\(]al|[ \n\(]St|[ \n\(]dh|[ \n\(]va|[ \n\(]ca|[ \n\(]Dr|[ \n\(]Hr|[ \n\(]Fr|[0-9]ff)"
twoChars= "(?<![ \n\(][A-Za-zΆ-Ωά-ωäöüß])"
oneChars= "(?<![0-9.])"
sentenceRegex="(?<=[^.]{4})"+fiveChars+fourChars+threeChars+twoChars+oneChars+"[.?!](?![A-Za-zΆ-Ωά-ωäöüß0-9.!?'\"])"
sectionRegex="\n[ ]*\n[\n ]*"
splitRegex="("+sentenceRegex+"|"+sectionRegex+")"
#---------------------------------------------------------------
# Function for adding docs to ChromaDB and/or return collection
#---------------------------------------------------------------
def add_doc(path, session):
global device
print("def add_doc!")
print(path)
anhang=False
if(str.lower(path).endswith(".pdf") and os.path.exists(path)):
doc=convertPDF(path)
if(len(doc[0])>5):
if(not "cuda" in device):
doc="\n\n".join(doc[0][0:5])
gr.Info("PDF uploaded to DB_"+str(session)+", start Indexing excerpt (demo-mode: first 5 pages on CPU setups)!")
else:
doc="\n\n".join(doc[0])
gr.Info("PDF uploaded to DB_"+str(session)+", start Indexing!")
else:
doc="\n\n".join(doc[0])
gr.Info("PDF uploaded to DB_"+str(session)+", start Indexing!")
anhang=True
else:
gr.Info("No PDF attached - answer based on DB_"+str(session)+".")
client = chromadb.PersistentClient(path=dbPath)
print(str(client.list_collections()))
print(str(session))
dbName="DB_"+str(session)
if(not "name="+dbName in str(client.list_collections())):
# client.delete_collection(name=dbName)
collection = client.create_collection(
name=dbName,
embedding_function=embeddingModel,
metadata={"hnsw:space": "cosine"})
else:
collection = client.get_collection(
name=dbName, embedding_function=embeddingModel)
if(anhang==True):
corpus=split_with_overlap(doc,3500,700,pattern=splitRegex)
print("Length of corpus: "+str(len(corpus)))
print("Corpus:"+str(corpus))
then = datetime.now()
x=collection.get(include=[])["ids"]
print(len(x))
if(len(x)==0):
chunkSize=40000
for i in range(round(len(corpus)/chunkSize+0.5)): #0 is first batch, 3 is last (incomplete) batch given 133497 texts
print("embed batch "+str(i)+" of "+str(round(len(corpus)/chunkSize+0.5)))
ids=list(range(i*chunkSize,(i*chunkSize+chunkSize)))
batch=corpus[i*chunkSize:(i*chunkSize+chunkSize)]
textIDs=[str(id) for id in ids[0:len(batch)]]
ids=[str(id+len(x)+1) for id in ids[0:len(batch)]] # id refers to chromadb-unique ID
collection.add(documents=batch, ids=ids,
metadatas=[{"date": str("2024-10-10")} for b in batch]) #"textID":textIDs, "id":ids,
print("finished batch "+str(i)+" of "+str(round(len(corpus)/40000+0.5)))
now = datetime.now()
gr.Info(f"Indexing complete!")
print(now-then) #zu viel GB für sentences (GPU), bzw. 0:00:10.375087 für chunks
return(collection)
#--------------------------------------------------------
# Function for response to user queries and pot. addenda
#--------------------------------------------------------
def multimodal_response(message, history, dropdown, hfToken, request: gr.Request):
print("def multimodal response!")
if(hfToken.startswith("hf_")): # use HF-hub with custom token if token is provided
inferenceClient = InferenceClient(model=myModel, token=hfToken)
else:
inferenceClient = InferenceClient(myModel)
global databases
if request:
session=request.session_hash
else:
session="0"
length=str(len(history))
print(databases)
if(not databases[-1][1]==session):
databases.append((date.today(),session))
#print(databases)
query=message["text"]
if(len(message["files"])>0): # is there at least one file attached?
collection=add_doc(message["files"][0], session)
else: # otherwise, you still want to get the collection with the session-based db
collection=add_doc(message["text"], session)
client = chromadb.PersistentClient(path=dbPath)
print(str(client.list_collections()))
x=collection.get(include=[])["ids"]
ragQuery=[format_prompt(query, history, historylimit=2,
#startOfString="", template0="{system}\n",template1="USER: {message}\n\n",template2="ASSISTANT: {response}\n\n") if len(history)>0 else query] # embed simply-formated dialogue
startOfString="", template1="{message}\n\n",template2="") if len(history)>0 else query] # embed simple string of User-queries only
context=collection.query(query_texts=ragQuery, n_results=3)
#context=["<Kontext "+str(i)+"> "+str(c)+"</Kontext "+str(i)+">" for i,c in enumerate(context["documents"][0])]
context=["Kontext "+str(i+1)+": \""+re.sub("\"","'",str(c))+"\"" for i,c in enumerate(context["documents"][0])]
gr.Info("Kontext:\n"+str(context))
generate_kwargs = dict(
temperature=float(0.9),
max_new_tokens=5000,
top_p=0.95,
repetition_penalty=1.0,
do_sample=True,
seed=42,
)
system="Mit Blick auf das folgende Gespräch und den relevanten Kontext, antworte auf die aktuelle Frage des Nutzers. "+\
"Antworte ausschließlich auf Basis der Informationen im Kontext.\n\nKontext:\n\n"+\
str("\n\n".join(context))
#"Given the following conversation, relevant context, and a follow up question, "+\
#"reply with an answer to the current question the user is asking. "+\
#"Return only your response to the question given the above information "+\
#"following the users instructions as needed.\n\nContext:"+\
print(system)
#formatted_prompt = format_prompt0(system+"\n"+query, history)
formatted_prompt = format_prompt(query, history,system=system)
print(formatted_prompt)
output = ""
if(not "GGUF" in myModel):
try:
stream = inferenceClient.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
for response in stream:
output += response.token.text
yield output
except Exception as e:
output = "Für weitere Antworten von der KI gebe bitte einen gültigen HuggingFace-Token an."
if(len(context)>0):
output += "\nBis dahin helfen dir hoffentlich die folgenden Quellen weiter:"
yield output
print(str(e))
else:
try:
#generate_kwargs["prompt"]=formatted_prompt #
generate_kwargs={"prompt":formatted_prompt,"max_tokens":1000, "echo":"False","stream":"True"} #e.g. Mixtral-Instruct
url="http://0.0.0.0:2600/v1/completions"
response=""
buffer=""
print("URL: "+url)
print("User: "+str(message)+"\nAssistant: ")
for text in requests.post(url, json=generate_kwargs, stream=True): #-H 'accept: application/json' -H 'Content-Type: application/json'
if buffer is None: buffer=""
buffer=str("".join(buffer))
text=text.decode('utf-8')
if((text.startswith(": ping -")==False) & (len(text.strip("\n\r"))>0)): buffer=buffer+str(text)
buffer=buffer.split('"finish_reason": null}]}')
if(len(buffer)==1):
buffer="".join(buffer)
pass
if(len(buffer)==2):
part=buffer[0]+'"finish_reason": null}]}'
if(part.lstrip('\n\r').startswith("data: ")): part=part.lstrip('\n\r').replace("data: ", "")
try:
part = str(json.loads(part)["choices"][0]["text"])
print(part, end="", flush=True)
output += part
buffer=""
except Exception as e:
print("Exception:"+str(e))
pass
yield output
except Exception as e:
output = "Die KI antwortet gerade nicht."
if(len(context)>0):
output += "\nBis dahin helfen dir hoffentlich die folgenden Quellen weiter:"
yield output
print(str(e))
if(len(context)>0):
output=output+"\n\n<br><details open><summary><strong>Quellen</strong></summary><br><ul>"+ "".join(["<li>" + c + "</li>" for c in context])+"</ul></details>"
yield output
#------------------------------
# Launch Gradio-ChatInterface
#------------------------------
i=gr.ChatInterface(multimodal_response,
title="Frag dein PDF",
multimodal=True,
additional_inputs=[
gr.Dropdown(
info="Wähle eine Variante",
choices=["1","2","3"],
value="1",
label="Variante"),
gr.Textbox(
value="",
label="HF_token"),
])
i.launch() #allowed_paths=["."])
|