File size: 17,251 Bytes
ddae01a
 
 
 
069ed74
ddae01a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
069ed74
ddae01a
069ed74
 
b8b47c0
 
134cc02
ddae01a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
639562c
ddae01a
 
 
 
 
 
 
 
 
639562c
ddae01a
 
 
 
 
 
 
0d912a8
ddae01a
 
 
af54abc
ddae01a
 
 
 
 
 
 
3418a2a
ddae01a
 
 
 
 
 
 
 
 
 
 
b8b47c0
ddae01a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220d1ce
ddae01a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6c4a49
0a2c196
ddae01a
b8b47c0
ddae01a
 
b8b47c0
069ed74
b8b47c0
ddae01a
5fa86dd
 
b8b47c0
ddae01a
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#########################################################################################
# Title:  Gradio Writing Assistant
# Author: Andreas Fischer
# Date:   May 23th, 2024
# Last update: October 15th, 2024
##########################################################################################

#https://github.com/abetlen/llama-cpp-python/issues/306
#sudo apt install libclblast-dev
#CMAKE_ARGS="-DLLAMA_CLBLAST=on" FORCE_CMAKE=1 pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir -v


# Prepare resources
#-------------------
import torch
import gc
torch.cuda.empty_cache()
gc.collect()


# Chroma-DB
#-----------
import os
import chromadb
dbPath = "/home/af/Schreibtisch/Code/gradio/Chroma/db" 
onPrem = True if(os.path.exists(dbPath)) else False 
if(onPrem==False): dbPath="/home/user/app/db"

#onPrem=True  # uncomment to override automatic detection
print(dbPath)
#client = chromadb.Client()
path=dbPath
client = chromadb.PersistentClient(path=path)
print(client.heartbeat()) 
print(client.get_version())  
print(client.list_collections()) 
from chromadb.utils import embedding_functions
default_ef = embedding_functions.DefaultEmbeddingFunction()
#sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda")
embeddingModel = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer", device="cuda" if(onPrem) else "cpu")
print(str(client.list_collections()))

global collection
dbName="writingStyleDB1"

if("name="+dbName in str(client.list_collections())): client.delete_collection(name=dbName) # deletes collection

if("name="+dbName in str(client.list_collections())):
  print(dbName+" found!")
  collection = client.get_collection(name=dbName, embedding_function=embeddingModel) #sentence_transformer_ef)
else:
  #client.delete_collection(name=dbName)
  print(dbName+" created!")
  collection = client.create_collection(
    dbName,
    embedding_function=embeddingModel,
    metadata={"hnsw:space": "cosine"})

print("Database ready!")
print(collection.count()) 

x=collection.get(include=[])["ids"]
if(len(x)==0):
  x=collection.get(include=[])["ids"]
  collection.add(
    documents=["Ich möchte einen Blogbeitrag","Ich möchte einen wissenschaftlichen Beitrag","Ich möchte einen Gliederungsvorschlag","Ich möchte einen Social Media Beitrag"], 
    metadatas=[
      {"prompt": "Bitte schreibe einen detaillierten Blogbeitrag zur Anfrage des Users, mit allen relevanten Informationen zum Thema!", "genre":"Blogbeitrag"},
      {"prompt": "Bitte schreibe einen wissenschaftlichen Beitrag zur Anfrage des Users, mit allen relevanten Informationen zum Thema!", "genre":"Wissenschaftlicher Beitrag"},
      {"prompt": "Bitte entwerfe einen Gliederungsvorschlag zur Anfrage des Users!", "genre":"Gliederungsvorschlag"},
      {"prompt": "Bitte verfasse einen Beitrag für die professionelle social media Plattform LinkedIn zur Anfrage des Users!", "genre":"Social Media Beitrag"}], 
    ids=[str(len(x)+1),str(len(x)+2),str(len(x)+3),str(len(x)+4)] 
  )

RAGResults=collection.query(
    query_texts=["Dies ist ein Test"],
    n_results=1,
      #where={"source": "USER"}
)
RAGResults["metadatas"][0][0]["prompt"]
x=collection.get(where_document={"$contains":"Blogbeitrag"},include=["metadatas"])['metadatas'][0]['prompt']


# Model
#-------
onPrem=False
myModel="mistralai/Mixtral-8x7B-Instruct-v0.1" 
if(onPrem==False): 
  modelPath=myModel
  from huggingface_hub import InferenceClient
  import gradio as gr
  client = InferenceClient(
    model=modelPath,
    #token="hf_..."
  )
else:
  import os
  import requests
  import subprocess
  #modelPath="/home/af/gguf/models/c4ai-command-r-v01-Q4_0.gguf"
  #modelPath="/home/af/gguf/models/Discolm_german_7b_v1.Q4_0.gguf"
  modelPath="/home/af/gguf/models/Mixtral-8x7b-instruct-v0.1.Q4_0.gguf"
  if(os.path.exists(modelPath)==False):
    #url="https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GGUF/resolve/main/discolm_german_7b_v1.Q4_0.gguf?download=true"
    url="https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/resolve/main/mixtral-8x7b-instruct-v0.1.Q4_0.gguf?download=true"
    response = requests.get(url)
    with open("./Mixtral-8x7b-instruct.gguf", mode="wb") as file:
      file.write(response.content)
    print("Model downloaded")  
    modelPath="./Mixtral-8x7b-instruct.gguf"
  print(modelPath)
  n="20" 
  if("Mixtral-8x7b-instruct" in modelPath): n="0" # mixtral seems to cause problems here...
  command = ["python3", "-m", "llama_cpp.server", "--model", modelPath, "--host", "0.0.0.0", "--port", "2600", "--n_threads", "8", "--n_gpu_layers", n]
  subprocess.Popen(command)
  print("Server ready!")


# Check template
#----------------
if(False):
  from transformers import AutoTokenizer
  #mod="mistralai/Mixtral-8x22B-Instruct-v0.1"
  #mod="mistralai/Mixtral-8x7b-instruct-v0.1"
  mod="VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct"
  tok=AutoTokenizer.from_pretrained(mod) #,token="hf_...")
  cha=[{"role":"system","content":"A"},{"role":"user","content":"B"},{"role":"assistant","content":"C"}]
  res=tok.apply_chat_template(cha)
  print(tok.decode(res))
  cha=[{"role":"user","content":"U1"},{"role":"assistant","content":"A1"},{"role":"user","content":"U2"},{"role":"assistant","content":"A2"}]
  res=tok.apply_chat_template(cha)
  print(tok.decode(res))


# Gradio-GUI
#------------
import re
def extend_prompt(message="", history=None, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4, removeHTML=True): 
  startOfString=""
  if zeichenlimit is None: zeichenlimit=1000000000 # :-)
  template0=" [INST]{system}\n  [/INST] </s>" 
  template1=" [INST] {message} [/INST]"
  template2=" {response}</s>"
  if("command-r" in modelPath): #https://huggingface.co/CohereForAI/c4ai-command-r-v01
    ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
    template0="<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|> {system}<|END_OF_TURN_TOKEN|>" 
    template1="<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{message}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"
    template2="{response}<|END_OF_TURN_TOKEN|>"
  if("Gemma-" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
    template0="<start_of_turn>user{system}</end_of_turn>" 
    template1="<start_of_turn>user{message}</end_of_turn><start_of_turn>model"
    template2="{response}</end_of_turn>"      
  if("Mixtral-8x22B-Instruct" in modelPath): # AutoTokenizer: <s>[INST] U1[/INST] A1</s>[INST] U2[/INST] A2</s>
    startOfString="<s>"
    template0="[INST]{system}\n  [/INST] </s>"  
    template1="[INST] {message}[/INST]"
    template2=" {response}</s>"
  if("Mixtral-8x7b-instruct" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
    startOfString="<s>"                     # AutoTokenzizer: <s> [INST] U1 [/INST]A1</s> [INST] U2 [/INST]A2</s>
    template0=" [INST]{system}\n  [/INST] </s>"  
    template1=" [INST] {message} [/INST]"
    template2=" {response}</s>"
  if("Mistral-7B-Instruct" in modelPath): #https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
    startOfString="<s>"
    template0="[INST]{system}\n [/INST]</s>"
    template1="[INST] {message} [/INST]"
    template2=" {response}</s>"
  if("Openchat-3.5" in modelPath): #https://huggingface.co/TheBloke/openchat-3.5-0106-GGUF
    template0="GPT4 Correct User: {system}<|end_of_turn|>GPT4 Correct Assistant: Okay.<|end_of_turn|>"
    template1="GPT4 Correct User: {message}<|end_of_turn|>GPT4 Correct Assistant: "
    template2="{response}<|end_of_turn|>"
  if(("Discolm_german_7b" in modelPath) or ("SauerkrautLM-7b-HerO" in modelPath)):  #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO
    template0="<|im_start|>system\n{system}<|im_end|>\n"
    template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
    template2="{response}<|im_end|>\n"    
  if("Llama-3-SauerkrautLM-8b-Instruct" in modelPath):  #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO
    template0="<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system}<|eot_id|>"
    template1="<|start_header_id|>user<|end_header_id|>\n\n{message}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
    template2="{response}<|eot_id|>\n"        
  if("WizardLM-13B-V1.2" in modelPath): #https://huggingface.co/WizardLM/WizardLM-13B-V1.2
    template0="{system} " #<s>
    template1="USER: {message} ASSISTANT: "
    template2="{response}</s>"
  if("Phi-2" in modelPath): #https://huggingface.co/TheBloke/phi-2-GGUF
    template0="Instruct: {system}\nOutput: Okay.\n"
    template1="Instruct: {message}\nOutput:"
    template2="{response}\n"  
  prompt = ""
  if RAGAddon is not None:
    system += RAGAddon
  if system is not None:
    prompt += template0.format(system=system) #"<s>"
  if history is not None:
    for user_message, bot_response in history[-historylimit:]:
      if user_message is None: user_message = "" 
      if bot_response is None: bot_response = ""
      bot_response = re.sub("\n\n<details(| open)>.*?</details>","", bot_response, flags=re.DOTALL) # remove RAG-compontents
      if removeHTML==True: bot_response = re.sub("<(.*?)>","\n", bot_response) # remove HTML-components in general (may cause bugs with markdown-rendering)
      if user_message is not None: prompt += template1.format(message=user_message[:zeichenlimit])  
      if bot_response is not None: prompt += template2.format(response=bot_response[:zeichenlimit]) 
  if message is not None: prompt += template1.format(message=message[:zeichenlimit])                
  if system2 is not None:
    prompt += system2
  return startOfString+prompt



import gradio as gr
import requests
import json
from datetime import datetime
import os
import re

def response(message, history,customSysPrompt, genre, augmentation, hfToken):
  if((onPrem==False) & (hfToken.startswith("hf_"))): # use HF-hub with custom token if token is provided
    from huggingface_hub import InferenceClient
    import gradio as gr
    global client
    client = InferenceClient(
      model=myModel,
      token=hfToken
    )
  removeHTML=True
  system=customSysPrompt # system-prompt can be changed in the UI (usually defaults to something like the following system-prompt)
  if(system==""): system="Du bist wissenschaftlicher Mitarbeiter an einem Forschungsinstitut und zuständig für die Wissenschaftskommunikation."
  if(augmentation==True): system=system+"\nFür eine besonders gelungene Lösung erhältst du eine Gehaltserhöhung! Schreibe deine Texte in natürlicher und einfacher Sprache. Zielgruppe sind deutschsprachige Personen mit unterschiedlichen Bildungshintergründen."
  message=message.replace("[INST]","")
  message=message.replace("[/INST]","")
  message=message.replace("</s>","")
  message=re.sub("<[|](im_start|im_end|end_of_turn)[|]>", '', message)
  x=collection.get(include=[])["ids"]  
  rag=None # RAG is turned off until history gets too long
  historylimit=2
  if(genre==""): # use RAG to define genre if there is none
    RAGResults=collection.query(query_texts=[message], n_results=1)
    genre=str(RAGResults['documents'][0][0]) # determine genre based on best-matching db-entry 
  
  rag="\n\n"+collection.get(where={"genre": genre},include=["metadatas"])['metadatas'][0]['prompt'] # genre-specific addendum to system prompt (rag)
  if(len(history)>0):
    rag=rag+"\nFalls der User Rückfragen oder Änderungsvorschläge zu deinem Entwurf hat, gehe darauf ein." # add dialog-specific addendum to rag
  
  system2=None # system2 can be used as fictive first words of the AI, which are not displayed or stored
  prompt=extend_prompt(
    message,                  # current message of the user
    history,                  # complete history 
    system,                   # system prompt
    rag,                      # RAG-component added to the system prompt
    system2,                  # fictive first words of the AI (neither displayed nor stored)
    historylimit=historylimit,# number of past messages to consider for response to current message
    removeHTML=removeHTML     # remove HTML-components from History (to prevent bugs with Markdown)
    )
  if(True):
    print("\n\nMESSAGE:"+str(message))
    print("\n\nHISTORY:"+str(history))
    print("\n\nSYSTEM:"+str(system))
    print("\n\nRAG:"+str(rag))
    print("\n\nSYSTEM2:"+str(system2))
    print("\n\n*** Prompt:\n"+prompt+"\n***\n\n")
  
  ## Request response from model
  #------------------------------
  
  print("AI running on prem!" if(onPrem) else "AI running HFHub!")
  if(onPrem==False):
    temperature=float(0.9) 
    max_new_tokens=3000 
    top_p=0.95 
    repetition_penalty=1.0
    if temperature < 1e-2: temperature = 1e-2
    top_p = float(top_p)
    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )
    stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    response = ""
    #print("User: "+message+"\nAI: ")
    for text in stream:
        part=text.token.text
        #print(part, end="", flush=True)
        response += part
        if removeHTML==True: response = re.sub("<(.*?)>","\n", response) # remove HTML-components in general (may cause bugs with markdown-rendering)
        yield response
 
  if(onPrem==True):
    # url="https://afischer1985-wizardlm-13b-v1-2-q4-0-gguf.hf.space/v1/completions"
    url="http://0.0.0.0:2600/v1/completions"  
    body={"prompt":prompt,"max_tokens":None, "echo":"False","stream":"True"}      # e.g. Mixtral-Instruct
    if("Discolm_german_7b" in modelPath): body.update({"stop": ["<|im_end|>"]})   # fix stop-token of DiscoLM
    if("Gemma-" in modelPath): body.update({"stop": ["<|im_end|>","</end_of_turn>"]})   # fix stop-token of Gemma
    response="" #+"("+myType+")\n"
    buffer=""
    #print("URL: "+url)
    #print("User: "+message+"\nAI: ")
    for text in requests.post(url, json=body, stream=True):  #-H 'accept: application/json' -H 'Content-Type: application/json'
      if buffer is None: buffer=""
      buffer=str("".join(buffer))
      # print("*** Raw String: "+str(text)+"\n***\n")
      text=text.decode('utf-8')
      if((text.startswith(": ping -")==False) & (len(text.strip("\n\r"))>0)): buffer=buffer+str(text)
      # print("\n*** Buffer: "+str(buffer)+"\n***\n") 
      buffer=buffer.split('"finish_reason": null}]}')
      if(len(buffer)==1):
        buffer="".join(buffer)
        pass
      if(len(buffer)==2):
        part=buffer[0]+'"finish_reason": null}]}'  
        if(part.lstrip('\n\r').startswith("data: ")): part=part.lstrip('\n\r').replace("data: ", "")
        try: 
          part = str(json.loads(part)["choices"][0]["text"])
          #print(part, end="", flush=True)
          response=response+part
          buffer="" # reset buffer
        except Exception as e:
          print("Exception:"+str(e))
          pass
      if removeHTML==True: response = re.sub("<(.*?)>","\n", response) # remove HTML-components in general (may cause bugs with markdown-rendering)
      yield response
    history.append((message, response)) # add current dialog to history

val=None
gr.ChatInterface(
  response, 
  chatbot=gr.Chatbot(value=val, render_markdown=True),
  title="KI Schreibassistenz (lokal)" if onPrem else "KI Schreibassistenz",
  description="<center>Benenne ein Thema (sowie ggf. weitere Vorgaben) und klicke auf <strong>'Submit'</strong> um einen Text dazu generieren zu lassen.<br>Solltest du eine bestimmte Art von Text benötigen, wähle unter <strong>'Additional Inputs'</strong> ein geeignetes Genre aus.<br>Beachte, dass KI-generierte Texte grundsätzlich auch falsche, veraltete, verzerrte oder anderweitig irreführende Aussagen enthalten können. Verwende diese Texte keinesfalls ohne <strong>gewissenhafte Prüfung und Überarbeitung!</strong>.</center>",
  additional_inputs=[
    gr.Textbox(info="Basiskomponente der Anweisungen, die vor dem Dialog an das System gehen.",
      value="Du bist wissenschaftlicher Mitarbeiter an einem Forschungsinstitut und zuständig für die Wissenschaftskommunikation.",
      label="System Prompt"),
    gr.Dropdown(info="Wähle das gewünschte Genre des zu schreibenden Textes",
      choices=["Blogbeitrag","Wissenschaftlicher Beitrag","Gliederungsvorschlag","Social Media Beitrag",""],
      value="Beitrag",
      label="Genre"),
    gr.Checkbox(info="Optional: Ergänzung des System Prompt um Formulierungen für einfachere Sprache.",
      label="Vereinfachung"),
    gr.Textbox(info="Optional: Gib einen gültigen Huggingface Access Token an, um mehr Texte produzieren zu können.",
      value="",
      label="HF_token"),     
  ]
  ).queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864)
print("Interface up and running!")