Spaces:
Sleeping
Sleeping
File size: 17,251 Bytes
ddae01a 069ed74 ddae01a 069ed74 ddae01a 069ed74 b8b47c0 134cc02 ddae01a 639562c ddae01a 639562c ddae01a 0d912a8 ddae01a af54abc ddae01a 3418a2a ddae01a b8b47c0 ddae01a 220d1ce ddae01a c6c4a49 0a2c196 ddae01a b8b47c0 ddae01a b8b47c0 069ed74 b8b47c0 ddae01a 5fa86dd b8b47c0 ddae01a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 |
#########################################################################################
# Title: Gradio Writing Assistant
# Author: Andreas Fischer
# Date: May 23th, 2024
# Last update: October 15th, 2024
##########################################################################################
#https://github.com/abetlen/llama-cpp-python/issues/306
#sudo apt install libclblast-dev
#CMAKE_ARGS="-DLLAMA_CLBLAST=on" FORCE_CMAKE=1 pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir -v
# Prepare resources
#-------------------
import torch
import gc
torch.cuda.empty_cache()
gc.collect()
# Chroma-DB
#-----------
import os
import chromadb
dbPath = "/home/af/Schreibtisch/Code/gradio/Chroma/db"
onPrem = True if(os.path.exists(dbPath)) else False
if(onPrem==False): dbPath="/home/user/app/db"
#onPrem=True # uncomment to override automatic detection
print(dbPath)
#client = chromadb.Client()
path=dbPath
client = chromadb.PersistentClient(path=path)
print(client.heartbeat())
print(client.get_version())
print(client.list_collections())
from chromadb.utils import embedding_functions
default_ef = embedding_functions.DefaultEmbeddingFunction()
#sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer")
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda")
embeddingModel = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer", device="cuda" if(onPrem) else "cpu")
print(str(client.list_collections()))
global collection
dbName="writingStyleDB1"
if("name="+dbName in str(client.list_collections())): client.delete_collection(name=dbName) # deletes collection
if("name="+dbName in str(client.list_collections())):
print(dbName+" found!")
collection = client.get_collection(name=dbName, embedding_function=embeddingModel) #sentence_transformer_ef)
else:
#client.delete_collection(name=dbName)
print(dbName+" created!")
collection = client.create_collection(
dbName,
embedding_function=embeddingModel,
metadata={"hnsw:space": "cosine"})
print("Database ready!")
print(collection.count())
x=collection.get(include=[])["ids"]
if(len(x)==0):
x=collection.get(include=[])["ids"]
collection.add(
documents=["Ich möchte einen Blogbeitrag","Ich möchte einen wissenschaftlichen Beitrag","Ich möchte einen Gliederungsvorschlag","Ich möchte einen Social Media Beitrag"],
metadatas=[
{"prompt": "Bitte schreibe einen detaillierten Blogbeitrag zur Anfrage des Users, mit allen relevanten Informationen zum Thema!", "genre":"Blogbeitrag"},
{"prompt": "Bitte schreibe einen wissenschaftlichen Beitrag zur Anfrage des Users, mit allen relevanten Informationen zum Thema!", "genre":"Wissenschaftlicher Beitrag"},
{"prompt": "Bitte entwerfe einen Gliederungsvorschlag zur Anfrage des Users!", "genre":"Gliederungsvorschlag"},
{"prompt": "Bitte verfasse einen Beitrag für die professionelle social media Plattform LinkedIn zur Anfrage des Users!", "genre":"Social Media Beitrag"}],
ids=[str(len(x)+1),str(len(x)+2),str(len(x)+3),str(len(x)+4)]
)
RAGResults=collection.query(
query_texts=["Dies ist ein Test"],
n_results=1,
#where={"source": "USER"}
)
RAGResults["metadatas"][0][0]["prompt"]
x=collection.get(where_document={"$contains":"Blogbeitrag"},include=["metadatas"])['metadatas'][0]['prompt']
# Model
#-------
onPrem=False
myModel="mistralai/Mixtral-8x7B-Instruct-v0.1"
if(onPrem==False):
modelPath=myModel
from huggingface_hub import InferenceClient
import gradio as gr
client = InferenceClient(
model=modelPath,
#token="hf_..."
)
else:
import os
import requests
import subprocess
#modelPath="/home/af/gguf/models/c4ai-command-r-v01-Q4_0.gguf"
#modelPath="/home/af/gguf/models/Discolm_german_7b_v1.Q4_0.gguf"
modelPath="/home/af/gguf/models/Mixtral-8x7b-instruct-v0.1.Q4_0.gguf"
if(os.path.exists(modelPath)==False):
#url="https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GGUF/resolve/main/discolm_german_7b_v1.Q4_0.gguf?download=true"
url="https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/resolve/main/mixtral-8x7b-instruct-v0.1.Q4_0.gguf?download=true"
response = requests.get(url)
with open("./Mixtral-8x7b-instruct.gguf", mode="wb") as file:
file.write(response.content)
print("Model downloaded")
modelPath="./Mixtral-8x7b-instruct.gguf"
print(modelPath)
n="20"
if("Mixtral-8x7b-instruct" in modelPath): n="0" # mixtral seems to cause problems here...
command = ["python3", "-m", "llama_cpp.server", "--model", modelPath, "--host", "0.0.0.0", "--port", "2600", "--n_threads", "8", "--n_gpu_layers", n]
subprocess.Popen(command)
print("Server ready!")
# Check template
#----------------
if(False):
from transformers import AutoTokenizer
#mod="mistralai/Mixtral-8x22B-Instruct-v0.1"
#mod="mistralai/Mixtral-8x7b-instruct-v0.1"
mod="VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct"
tok=AutoTokenizer.from_pretrained(mod) #,token="hf_...")
cha=[{"role":"system","content":"A"},{"role":"user","content":"B"},{"role":"assistant","content":"C"}]
res=tok.apply_chat_template(cha)
print(tok.decode(res))
cha=[{"role":"user","content":"U1"},{"role":"assistant","content":"A1"},{"role":"user","content":"U2"},{"role":"assistant","content":"A2"}]
res=tok.apply_chat_template(cha)
print(tok.decode(res))
# Gradio-GUI
#------------
import re
def extend_prompt(message="", history=None, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4, removeHTML=True):
startOfString=""
if zeichenlimit is None: zeichenlimit=1000000000 # :-)
template0=" [INST]{system}\n [/INST] </s>"
template1=" [INST] {message} [/INST]"
template2=" {response}</s>"
if("command-r" in modelPath): #https://huggingface.co/CohereForAI/c4ai-command-r-v01
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>
template0="<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|> {system}<|END_OF_TURN_TOKEN|>"
template1="<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{message}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"
template2="{response}<|END_OF_TURN_TOKEN|>"
if("Gemma-" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
template0="<start_of_turn>user{system}</end_of_turn>"
template1="<start_of_turn>user{message}</end_of_turn><start_of_turn>model"
template2="{response}</end_of_turn>"
if("Mixtral-8x22B-Instruct" in modelPath): # AutoTokenizer: <s>[INST] U1[/INST] A1</s>[INST] U2[/INST] A2</s>
startOfString="<s>"
template0="[INST]{system}\n [/INST] </s>"
template1="[INST] {message}[/INST]"
template2=" {response}</s>"
if("Mixtral-8x7b-instruct" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
startOfString="<s>" # AutoTokenzizer: <s> [INST] U1 [/INST]A1</s> [INST] U2 [/INST]A2</s>
template0=" [INST]{system}\n [/INST] </s>"
template1=" [INST] {message} [/INST]"
template2=" {response}</s>"
if("Mistral-7B-Instruct" in modelPath): #https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
startOfString="<s>"
template0="[INST]{system}\n [/INST]</s>"
template1="[INST] {message} [/INST]"
template2=" {response}</s>"
if("Openchat-3.5" in modelPath): #https://huggingface.co/TheBloke/openchat-3.5-0106-GGUF
template0="GPT4 Correct User: {system}<|end_of_turn|>GPT4 Correct Assistant: Okay.<|end_of_turn|>"
template1="GPT4 Correct User: {message}<|end_of_turn|>GPT4 Correct Assistant: "
template2="{response}<|end_of_turn|>"
if(("Discolm_german_7b" in modelPath) or ("SauerkrautLM-7b-HerO" in modelPath)): #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO
template0="<|im_start|>system\n{system}<|im_end|>\n"
template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n"
template2="{response}<|im_end|>\n"
if("Llama-3-SauerkrautLM-8b-Instruct" in modelPath): #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO
template0="<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system}<|eot_id|>"
template1="<|start_header_id|>user<|end_header_id|>\n\n{message}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
template2="{response}<|eot_id|>\n"
if("WizardLM-13B-V1.2" in modelPath): #https://huggingface.co/WizardLM/WizardLM-13B-V1.2
template0="{system} " #<s>
template1="USER: {message} ASSISTANT: "
template2="{response}</s>"
if("Phi-2" in modelPath): #https://huggingface.co/TheBloke/phi-2-GGUF
template0="Instruct: {system}\nOutput: Okay.\n"
template1="Instruct: {message}\nOutput:"
template2="{response}\n"
prompt = ""
if RAGAddon is not None:
system += RAGAddon
if system is not None:
prompt += template0.format(system=system) #"<s>"
if history is not None:
for user_message, bot_response in history[-historylimit:]:
if user_message is None: user_message = ""
if bot_response is None: bot_response = ""
bot_response = re.sub("\n\n<details(| open)>.*?</details>","", bot_response, flags=re.DOTALL) # remove RAG-compontents
if removeHTML==True: bot_response = re.sub("<(.*?)>","\n", bot_response) # remove HTML-components in general (may cause bugs with markdown-rendering)
if user_message is not None: prompt += template1.format(message=user_message[:zeichenlimit])
if bot_response is not None: prompt += template2.format(response=bot_response[:zeichenlimit])
if message is not None: prompt += template1.format(message=message[:zeichenlimit])
if system2 is not None:
prompt += system2
return startOfString+prompt
import gradio as gr
import requests
import json
from datetime import datetime
import os
import re
def response(message, history,customSysPrompt, genre, augmentation, hfToken):
if((onPrem==False) & (hfToken.startswith("hf_"))): # use HF-hub with custom token if token is provided
from huggingface_hub import InferenceClient
import gradio as gr
global client
client = InferenceClient(
model=myModel,
token=hfToken
)
removeHTML=True
system=customSysPrompt # system-prompt can be changed in the UI (usually defaults to something like the following system-prompt)
if(system==""): system="Du bist wissenschaftlicher Mitarbeiter an einem Forschungsinstitut und zuständig für die Wissenschaftskommunikation."
if(augmentation==True): system=system+"\nFür eine besonders gelungene Lösung erhältst du eine Gehaltserhöhung! Schreibe deine Texte in natürlicher und einfacher Sprache. Zielgruppe sind deutschsprachige Personen mit unterschiedlichen Bildungshintergründen."
message=message.replace("[INST]","")
message=message.replace("[/INST]","")
message=message.replace("</s>","")
message=re.sub("<[|](im_start|im_end|end_of_turn)[|]>", '', message)
x=collection.get(include=[])["ids"]
rag=None # RAG is turned off until history gets too long
historylimit=2
if(genre==""): # use RAG to define genre if there is none
RAGResults=collection.query(query_texts=[message], n_results=1)
genre=str(RAGResults['documents'][0][0]) # determine genre based on best-matching db-entry
rag="\n\n"+collection.get(where={"genre": genre},include=["metadatas"])['metadatas'][0]['prompt'] # genre-specific addendum to system prompt (rag)
if(len(history)>0):
rag=rag+"\nFalls der User Rückfragen oder Änderungsvorschläge zu deinem Entwurf hat, gehe darauf ein." # add dialog-specific addendum to rag
system2=None # system2 can be used as fictive first words of the AI, which are not displayed or stored
prompt=extend_prompt(
message, # current message of the user
history, # complete history
system, # system prompt
rag, # RAG-component added to the system prompt
system2, # fictive first words of the AI (neither displayed nor stored)
historylimit=historylimit,# number of past messages to consider for response to current message
removeHTML=removeHTML # remove HTML-components from History (to prevent bugs with Markdown)
)
if(True):
print("\n\nMESSAGE:"+str(message))
print("\n\nHISTORY:"+str(history))
print("\n\nSYSTEM:"+str(system))
print("\n\nRAG:"+str(rag))
print("\n\nSYSTEM2:"+str(system2))
print("\n\n*** Prompt:\n"+prompt+"\n***\n\n")
## Request response from model
#------------------------------
print("AI running on prem!" if(onPrem) else "AI running HFHub!")
if(onPrem==False):
temperature=float(0.9)
max_new_tokens=3000
top_p=0.95
repetition_penalty=1.0
if temperature < 1e-2: temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
response = ""
#print("User: "+message+"\nAI: ")
for text in stream:
part=text.token.text
#print(part, end="", flush=True)
response += part
if removeHTML==True: response = re.sub("<(.*?)>","\n", response) # remove HTML-components in general (may cause bugs with markdown-rendering)
yield response
if(onPrem==True):
# url="https://afischer1985-wizardlm-13b-v1-2-q4-0-gguf.hf.space/v1/completions"
url="http://0.0.0.0:2600/v1/completions"
body={"prompt":prompt,"max_tokens":None, "echo":"False","stream":"True"} # e.g. Mixtral-Instruct
if("Discolm_german_7b" in modelPath): body.update({"stop": ["<|im_end|>"]}) # fix stop-token of DiscoLM
if("Gemma-" in modelPath): body.update({"stop": ["<|im_end|>","</end_of_turn>"]}) # fix stop-token of Gemma
response="" #+"("+myType+")\n"
buffer=""
#print("URL: "+url)
#print("User: "+message+"\nAI: ")
for text in requests.post(url, json=body, stream=True): #-H 'accept: application/json' -H 'Content-Type: application/json'
if buffer is None: buffer=""
buffer=str("".join(buffer))
# print("*** Raw String: "+str(text)+"\n***\n")
text=text.decode('utf-8')
if((text.startswith(": ping -")==False) & (len(text.strip("\n\r"))>0)): buffer=buffer+str(text)
# print("\n*** Buffer: "+str(buffer)+"\n***\n")
buffer=buffer.split('"finish_reason": null}]}')
if(len(buffer)==1):
buffer="".join(buffer)
pass
if(len(buffer)==2):
part=buffer[0]+'"finish_reason": null}]}'
if(part.lstrip('\n\r').startswith("data: ")): part=part.lstrip('\n\r').replace("data: ", "")
try:
part = str(json.loads(part)["choices"][0]["text"])
#print(part, end="", flush=True)
response=response+part
buffer="" # reset buffer
except Exception as e:
print("Exception:"+str(e))
pass
if removeHTML==True: response = re.sub("<(.*?)>","\n", response) # remove HTML-components in general (may cause bugs with markdown-rendering)
yield response
history.append((message, response)) # add current dialog to history
val=None
gr.ChatInterface(
response,
chatbot=gr.Chatbot(value=val, render_markdown=True),
title="KI Schreibassistenz (lokal)" if onPrem else "KI Schreibassistenz",
description="<center>Benenne ein Thema (sowie ggf. weitere Vorgaben) und klicke auf <strong>'Submit'</strong> um einen Text dazu generieren zu lassen.<br>Solltest du eine bestimmte Art von Text benötigen, wähle unter <strong>'Additional Inputs'</strong> ein geeignetes Genre aus.<br>Beachte, dass KI-generierte Texte grundsätzlich auch falsche, veraltete, verzerrte oder anderweitig irreführende Aussagen enthalten können. Verwende diese Texte keinesfalls ohne <strong>gewissenhafte Prüfung und Überarbeitung!</strong>.</center>",
additional_inputs=[
gr.Textbox(info="Basiskomponente der Anweisungen, die vor dem Dialog an das System gehen.",
value="Du bist wissenschaftlicher Mitarbeiter an einem Forschungsinstitut und zuständig für die Wissenschaftskommunikation.",
label="System Prompt"),
gr.Dropdown(info="Wähle das gewünschte Genre des zu schreibenden Textes",
choices=["Blogbeitrag","Wissenschaftlicher Beitrag","Gliederungsvorschlag","Social Media Beitrag",""],
value="Beitrag",
label="Genre"),
gr.Checkbox(info="Optional: Ergänzung des System Prompt um Formulierungen für einfachere Sprache.",
label="Vereinfachung"),
gr.Textbox(info="Optional: Gib einen gültigen Huggingface Access Token an, um mehr Texte produzieren zu können.",
value="",
label="HF_token"),
]
).queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864)
print("Interface up and running!")
|