Spaces:
Sleeping
Sleeping
######################################################################################### | |
# Title: Gradio Writing Assistant | |
# Author: Andreas Fischer | |
# Date: May 23th, 2024 | |
# Last update: October 15th, 2024 | |
########################################################################################## | |
#https://github.com/abetlen/llama-cpp-python/issues/306 | |
#sudo apt install libclblast-dev | |
#CMAKE_ARGS="-DLLAMA_CLBLAST=on" FORCE_CMAKE=1 pip install llama-cpp-python --force-reinstall --upgrade --no-cache-dir -v | |
# Prepare resources | |
#------------------- | |
import torch | |
import gc | |
torch.cuda.empty_cache() | |
gc.collect() | |
# Chroma-DB | |
#----------- | |
import os | |
import chromadb | |
dbPath = "/home/af/Schreibtisch/Code/gradio/Chroma/db" | |
onPrem = True if(os.path.exists(dbPath)) else False | |
if(onPrem==False): dbPath="/home/user/app/db" | |
#onPrem=True # uncomment to override automatic detection | |
print(dbPath) | |
#client = chromadb.Client() | |
path=dbPath | |
client = chromadb.PersistentClient(path=path) | |
print(client.heartbeat()) | |
print(client.get_version()) | |
print(client.list_collections()) | |
from chromadb.utils import embedding_functions | |
default_ef = embedding_functions.DefaultEmbeddingFunction() | |
#sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer") | |
#instructor_ef = embedding_functions.InstructorEmbeddingFunction(model_name="hkunlp/instructor-large", device="cuda") | |
embeddingModel = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="T-Systems-onsite/cross-en-de-roberta-sentence-transformer", device="cuda" if(onPrem) else "cpu") | |
print(str(client.list_collections())) | |
global collection | |
dbName="writingStyleDB1" | |
if("name="+dbName in str(client.list_collections())): client.delete_collection(name=dbName) # deletes collection | |
if("name="+dbName in str(client.list_collections())): | |
print(dbName+" found!") | |
collection = client.get_collection(name=dbName, embedding_function=embeddingModel) #sentence_transformer_ef) | |
else: | |
#client.delete_collection(name=dbName) | |
print(dbName+" created!") | |
collection = client.create_collection( | |
dbName, | |
embedding_function=embeddingModel, | |
metadata={"hnsw:space": "cosine"}) | |
print("Database ready!") | |
print(collection.count()) | |
x=collection.get(include=[])["ids"] | |
if(len(x)==0): | |
x=collection.get(include=[])["ids"] | |
collection.add( | |
documents=["Ich möchte einen Blogbeitrag","Ich möchte einen wissenschaftlichen Beitrag","Ich möchte einen Gliederungsvorschlag","Ich möchte einen Social Media Beitrag"], | |
metadatas=[ | |
{"prompt": "Bitte schreibe einen detaillierten Blogbeitrag zur Anfrage des Users, mit allen relevanten Informationen zum Thema!", "genre":"Blogbeitrag"}, | |
{"prompt": "Bitte schreibe einen wissenschaftlichen Beitrag zur Anfrage des Users, mit allen relevanten Informationen zum Thema!", "genre":"Wissenschaftlicher Beitrag"}, | |
{"prompt": "Bitte entwerfe einen Gliederungsvorschlag zur Anfrage des Users!", "genre":"Gliederungsvorschlag"}, | |
{"prompt": "Bitte verfasse einen Beitrag für die professionelle social media Plattform LinkedIn zur Anfrage des Users!", "genre":"Social Media Beitrag"}], | |
ids=[str(len(x)+1),str(len(x)+2),str(len(x)+3),str(len(x)+4)] | |
) | |
RAGResults=collection.query( | |
query_texts=["Dies ist ein Test"], | |
n_results=1, | |
#where={"source": "USER"} | |
) | |
RAGResults["metadatas"][0][0]["prompt"] | |
x=collection.get(where_document={"$contains":"Blogbeitrag"},include=["metadatas"])['metadatas'][0]['prompt'] | |
# Model | |
#------- | |
onPrem=False | |
myModel="mistralai/Mixtral-8x7B-Instruct-v0.1" | |
if(onPrem==False): | |
modelPath=myModel | |
from huggingface_hub import InferenceClient | |
import gradio as gr | |
client = InferenceClient( | |
model=modelPath, | |
#token="hf_..." | |
) | |
else: | |
import os | |
import requests | |
import subprocess | |
#modelPath="/home/af/gguf/models/c4ai-command-r-v01-Q4_0.gguf" | |
#modelPath="/home/af/gguf/models/Discolm_german_7b_v1.Q4_0.gguf" | |
modelPath="/home/af/gguf/models/Mixtral-8x7b-instruct-v0.1.Q4_0.gguf" | |
if(os.path.exists(modelPath)==False): | |
#url="https://huggingface.co/TheBloke/DiscoLM_German_7b_v1-GGUF/resolve/main/discolm_german_7b_v1.Q4_0.gguf?download=true" | |
url="https://huggingface.co/TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF/resolve/main/mixtral-8x7b-instruct-v0.1.Q4_0.gguf?download=true" | |
response = requests.get(url) | |
with open("./Mixtral-8x7b-instruct.gguf", mode="wb") as file: | |
file.write(response.content) | |
print("Model downloaded") | |
modelPath="./Mixtral-8x7b-instruct.gguf" | |
print(modelPath) | |
n="20" | |
if("Mixtral-8x7b-instruct" in modelPath): n="0" # mixtral seems to cause problems here... | |
command = ["python3", "-m", "llama_cpp.server", "--model", modelPath, "--host", "0.0.0.0", "--port", "2600", "--n_threads", "8", "--n_gpu_layers", n] | |
subprocess.Popen(command) | |
print("Server ready!") | |
# Check template | |
#---------------- | |
if(False): | |
from transformers import AutoTokenizer | |
#mod="mistralai/Mixtral-8x22B-Instruct-v0.1" | |
#mod="mistralai/Mixtral-8x7b-instruct-v0.1" | |
mod="VAGOsolutions/Llama-3-SauerkrautLM-8b-Instruct" | |
tok=AutoTokenizer.from_pretrained(mod) #,token="hf_...") | |
cha=[{"role":"system","content":"A"},{"role":"user","content":"B"},{"role":"assistant","content":"C"}] | |
res=tok.apply_chat_template(cha) | |
print(tok.decode(res)) | |
cha=[{"role":"user","content":"U1"},{"role":"assistant","content":"A1"},{"role":"user","content":"U2"},{"role":"assistant","content":"A2"}] | |
res=tok.apply_chat_template(cha) | |
print(tok.decode(res)) | |
# Gradio-GUI | |
#------------ | |
import re | |
def extend_prompt(message="", history=None, system=None, RAGAddon=None, system2=None, zeichenlimit=None,historylimit=4, removeHTML=True): | |
startOfString="" | |
if zeichenlimit is None: zeichenlimit=1000000000 # :-) | |
template0=" [INST]{system}\n [/INST] </s>" | |
template1=" [INST] {message} [/INST]" | |
template2=" {response}</s>" | |
if("command-r" in modelPath): #https://huggingface.co/CohereForAI/c4ai-command-r-v01 | |
## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> | |
template0="<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|> {system}<|END_OF_TURN_TOKEN|>" | |
template1="<|START_OF_TURN_TOKEN|><|USER_TOKEN|>{message}<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" | |
template2="{response}<|END_OF_TURN_TOKEN|>" | |
if("Gemma-" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1 | |
template0="<start_of_turn>user{system}</end_of_turn>" | |
template1="<start_of_turn>user{message}</end_of_turn><start_of_turn>model" | |
template2="{response}</end_of_turn>" | |
if("Mixtral-8x22B-Instruct" in modelPath): # AutoTokenizer: <s>[INST] U1[/INST] A1</s>[INST] U2[/INST] A2</s> | |
startOfString="<s>" | |
template0="[INST]{system}\n [/INST] </s>" | |
template1="[INST] {message}[/INST]" | |
template2=" {response}</s>" | |
if("Mixtral-8x7b-instruct" in modelPath): # https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1 | |
startOfString="<s>" # AutoTokenzizer: <s> [INST] U1 [/INST]A1</s> [INST] U2 [/INST]A2</s> | |
template0=" [INST]{system}\n [/INST] </s>" | |
template1=" [INST] {message} [/INST]" | |
template2=" {response}</s>" | |
if("Mistral-7B-Instruct" in modelPath): #https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2 | |
startOfString="<s>" | |
template0="[INST]{system}\n [/INST]</s>" | |
template1="[INST] {message} [/INST]" | |
template2=" {response}</s>" | |
if("Openchat-3.5" in modelPath): #https://huggingface.co/TheBloke/openchat-3.5-0106-GGUF | |
template0="GPT4 Correct User: {system}<|end_of_turn|>GPT4 Correct Assistant: Okay.<|end_of_turn|>" | |
template1="GPT4 Correct User: {message}<|end_of_turn|>GPT4 Correct Assistant: " | |
template2="{response}<|end_of_turn|>" | |
if(("Discolm_german_7b" in modelPath) or ("SauerkrautLM-7b-HerO" in modelPath)): #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO | |
template0="<|im_start|>system\n{system}<|im_end|>\n" | |
template1="<|im_start|>user\n{message}<|im_end|>\n<|im_start|>assistant\n" | |
template2="{response}<|im_end|>\n" | |
if("Llama-3-SauerkrautLM-8b-Instruct" in modelPath): #https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-HerO | |
template0="<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\n{system}<|eot_id|>" | |
template1="<|start_header_id|>user<|end_header_id|>\n\n{message}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n" | |
template2="{response}<|eot_id|>\n" | |
if("WizardLM-13B-V1.2" in modelPath): #https://huggingface.co/WizardLM/WizardLM-13B-V1.2 | |
template0="{system} " #<s> | |
template1="USER: {message} ASSISTANT: " | |
template2="{response}</s>" | |
if("Phi-2" in modelPath): #https://huggingface.co/TheBloke/phi-2-GGUF | |
template0="Instruct: {system}\nOutput: Okay.\n" | |
template1="Instruct: {message}\nOutput:" | |
template2="{response}\n" | |
prompt = "" | |
if RAGAddon is not None: | |
system += RAGAddon | |
if system is not None: | |
prompt += template0.format(system=system) #"<s>" | |
if history is not None: | |
for user_message, bot_response in history[-historylimit:]: | |
if user_message is None: user_message = "" | |
if bot_response is None: bot_response = "" | |
bot_response = re.sub("\n\n<details(| open)>.*?</details>","", bot_response, flags=re.DOTALL) # remove RAG-compontents | |
if removeHTML==True: bot_response = re.sub("<(.*?)>","\n", bot_response) # remove HTML-components in general (may cause bugs with markdown-rendering) | |
if user_message is not None: prompt += template1.format(message=user_message[:zeichenlimit]) | |
if bot_response is not None: prompt += template2.format(response=bot_response[:zeichenlimit]) | |
if message is not None: prompt += template1.format(message=message[:zeichenlimit]) | |
if system2 is not None: | |
prompt += system2 | |
return startOfString+prompt | |
import gradio as gr | |
import requests | |
import json | |
from datetime import datetime | |
import os | |
import re | |
def response(message, history,customSysPrompt, genre, augmentation, hfToken): | |
if((onPrem==False) & (hfToken.startswith("hf_"))): # use HF-hub with custom token if token is provided | |
from huggingface_hub import InferenceClient | |
import gradio as gr | |
global client | |
client = InferenceClient( | |
model=myModel, | |
token=hfToken | |
) | |
removeHTML=True | |
system=customSysPrompt # system-prompt can be changed in the UI (usually defaults to something like the following system-prompt) | |
if(system==""): system="Du bist wissenschaftlicher Mitarbeiter an einem Forschungsinstitut und zuständig für die Wissenschaftskommunikation." | |
if(augmentation==True): system=system+"\nFür eine besonders gelungene Lösung erhältst du eine Gehaltserhöhung! Schreibe deine Texte in natürlicher und einfacher Sprache. Zielgruppe sind deutschsprachige Personen mit unterschiedlichen Bildungshintergründen." | |
message=message.replace("[INST]","") | |
message=message.replace("[/INST]","") | |
message=message.replace("</s>","") | |
message=re.sub("<[|](im_start|im_end|end_of_turn)[|]>", '', message) | |
x=collection.get(include=[])["ids"] | |
rag=None # RAG is turned off until history gets too long | |
historylimit=2 | |
if(genre==""): # use RAG to define genre if there is none | |
RAGResults=collection.query(query_texts=[message], n_results=1) | |
genre=str(RAGResults['documents'][0][0]) # determine genre based on best-matching db-entry | |
rag="\n\n"+collection.get(where={"genre": genre},include=["metadatas"])['metadatas'][0]['prompt'] # genre-specific addendum to system prompt (rag) | |
if(len(history)>0): | |
rag=rag+"\nFalls der User Rückfragen oder Änderungsvorschläge zu deinem Entwurf hat, gehe darauf ein." # add dialog-specific addendum to rag | |
system2=None # system2 can be used as fictive first words of the AI, which are not displayed or stored | |
prompt=extend_prompt( | |
message, # current message of the user | |
history, # complete history | |
system, # system prompt | |
rag, # RAG-component added to the system prompt | |
system2, # fictive first words of the AI (neither displayed nor stored) | |
historylimit=historylimit,# number of past messages to consider for response to current message | |
removeHTML=removeHTML # remove HTML-components from History (to prevent bugs with Markdown) | |
) | |
if(True): | |
print("\n\nMESSAGE:"+str(message)) | |
print("\n\nHISTORY:"+str(history)) | |
print("\n\nSYSTEM:"+str(system)) | |
print("\n\nRAG:"+str(rag)) | |
print("\n\nSYSTEM2:"+str(system2)) | |
print("\n\n*** Prompt:\n"+prompt+"\n***\n\n") | |
## Request response from model | |
#------------------------------ | |
print("AI running on prem!" if(onPrem) else "AI running HFHub!") | |
if(onPrem==False): | |
temperature=float(0.9) | |
max_new_tokens=3000 | |
top_p=0.95 | |
repetition_penalty=1.0 | |
if temperature < 1e-2: temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
response = "" | |
#print("User: "+message+"\nAI: ") | |
for text in stream: | |
part=text.token.text | |
#print(part, end="", flush=True) | |
response += part | |
if removeHTML==True: response = re.sub("<(.*?)>","\n", response) # remove HTML-components in general (may cause bugs with markdown-rendering) | |
yield response | |
if(onPrem==True): | |
# url="https://afischer1985-wizardlm-13b-v1-2-q4-0-gguf.hf.space/v1/completions" | |
url="http://0.0.0.0:2600/v1/completions" | |
body={"prompt":prompt,"max_tokens":None, "echo":"False","stream":"True"} # e.g. Mixtral-Instruct | |
if("Discolm_german_7b" in modelPath): body.update({"stop": ["<|im_end|>"]}) # fix stop-token of DiscoLM | |
if("Gemma-" in modelPath): body.update({"stop": ["<|im_end|>","</end_of_turn>"]}) # fix stop-token of Gemma | |
response="" #+"("+myType+")\n" | |
buffer="" | |
#print("URL: "+url) | |
#print("User: "+message+"\nAI: ") | |
for text in requests.post(url, json=body, stream=True): #-H 'accept: application/json' -H 'Content-Type: application/json' | |
if buffer is None: buffer="" | |
buffer=str("".join(buffer)) | |
# print("*** Raw String: "+str(text)+"\n***\n") | |
text=text.decode('utf-8') | |
if((text.startswith(": ping -")==False) & (len(text.strip("\n\r"))>0)): buffer=buffer+str(text) | |
# print("\n*** Buffer: "+str(buffer)+"\n***\n") | |
buffer=buffer.split('"finish_reason": null}]}') | |
if(len(buffer)==1): | |
buffer="".join(buffer) | |
pass | |
if(len(buffer)==2): | |
part=buffer[0]+'"finish_reason": null}]}' | |
if(part.lstrip('\n\r').startswith("data: ")): part=part.lstrip('\n\r').replace("data: ", "") | |
try: | |
part = str(json.loads(part)["choices"][0]["text"]) | |
#print(part, end="", flush=True) | |
response=response+part | |
buffer="" # reset buffer | |
except Exception as e: | |
print("Exception:"+str(e)) | |
pass | |
if removeHTML==True: response = re.sub("<(.*?)>","\n", response) # remove HTML-components in general (may cause bugs with markdown-rendering) | |
yield response | |
history.append((message, response)) # add current dialog to history | |
val=None | |
gr.ChatInterface( | |
response, | |
chatbot=gr.Chatbot(value=val, render_markdown=True), | |
title="KI Schreibassistenz (lokal)" if onPrem else "KI Schreibassistenz", | |
description="<center>Benenne ein Thema (sowie ggf. weitere Vorgaben) und klicke auf <strong>'Submit'</strong> um einen Text dazu generieren zu lassen.<br>Solltest du eine bestimmte Art von Text benötigen, wähle unter <strong>'Additional Inputs'</strong> ein geeignetes Genre aus.<br>Beachte, dass KI-generierte Texte grundsätzlich auch falsche, veraltete, verzerrte oder anderweitig irreführende Aussagen enthalten können. Verwende diese Texte keinesfalls ohne <strong>gewissenhafte Prüfung und Überarbeitung!</strong>.</center>", | |
additional_inputs=[ | |
gr.Textbox(info="Basiskomponente der Anweisungen, die vor dem Dialog an das System gehen.", | |
value="Du bist wissenschaftlicher Mitarbeiter an einem Forschungsinstitut und zuständig für die Wissenschaftskommunikation.", | |
label="System Prompt"), | |
gr.Dropdown(info="Wähle das gewünschte Genre des zu schreibenden Textes", | |
choices=["Blogbeitrag","Wissenschaftlicher Beitrag","Gliederungsvorschlag","Social Media Beitrag",""], | |
value="Beitrag", | |
label="Genre"), | |
gr.Checkbox(info="Optional: Ergänzung des System Prompt um Formulierungen für einfachere Sprache.", | |
label="Vereinfachung"), | |
gr.Textbox(info="Optional: Gib einen gültigen Huggingface Access Token an, um mehr Texte produzieren zu können.", | |
value="", | |
label="HF_token"), | |
] | |
).queue().launch(share=True) #False, server_name="0.0.0.0", server_port=7864) | |
print("Interface up and running!") | |