Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
import sys | |
import io | |
import requests | |
import json | |
import base64 | |
from PIL import Image | |
import numpy as np | |
import gradio as gr | |
import mmengine | |
from mmengine import Config, get | |
import argparse | |
import os | |
import cv2 | |
import yaml | |
import torch | |
from torch.utils.data import DataLoader | |
from tqdm import tqdm | |
import datasets | |
import models | |
import numpy as np | |
from torchvision import transforms | |
from mmcv.runner import load_checkpoint | |
import visual_utils | |
from PIL import Image | |
from models.utils_prompt import get_prompt_inp, pre_prompt, pre_scatter_prompt, get_prompt_inp_scatter | |
device = torch.device("cpu") | |
def batched_predict(model, inp, coord, bsize): | |
with torch.no_grad(): | |
model.gen_feat(inp) | |
n = coord.shape[1] | |
ql = 0 | |
preds = [] | |
while ql < n: | |
qr = min(ql + bsize, n) | |
pred = model.query_rgb(coord[:, ql: qr, :]) | |
preds.append(pred) | |
ql = qr | |
pred = torch.cat(preds, dim=1) | |
return pred, preds | |
def tensor2PIL(tensor): | |
toPIL = transforms.ToPILImage() | |
return toPIL(tensor) | |
def Decoder1_optical_instance(image_input): | |
with open('configs/fine_tuning_one_decoder.yaml', 'r') as f: | |
config = yaml.load(f, Loader=yaml.FullLoader) | |
model = models.make(config['model']).cpu() | |
sam_checkpoint = torch.load("./save/model_epoch_last.pth", map_location='cpu') | |
model.load_state_dict(sam_checkpoint, strict=False) | |
model.eval() | |
# img = np.array(image_input).copy() | |
label2color = visual_utils.Label2Color(cmap=visual_utils.color_map('Unify_double')) | |
# image_input.save(f'./save/visual_fair1m/input_img.png', quality=5) | |
img = transforms.Resize([1024, 1024])(image_input) | |
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229,0.224,0.225])]) | |
input_img = transform(img) | |
input_img = input_img.unsqueeze(0) | |
image_embedding = model.image_encoder(input_img) # torch.Size([1, 256, 64, 64]) | |
sparse_embeddings, dense_embeddings, scatter_embeddings = model.prompt_encoder( | |
points=None, | |
boxes=None, | |
masks=None, | |
scatter=None) | |
# 目标类预测decoder | |
low_res_masks, iou_predictions = model.mask_decoder( | |
image_embeddings=image_embedding, | |
image_pe=model.prompt_encoder.get_dense_pe(), | |
sparse_prompt_embeddings=sparse_embeddings, | |
dense_prompt_embeddings=dense_embeddings, | |
multimask_output=False | |
) | |
pred = model.postprocess_masks(low_res_masks, model.inp_size, model.inp_size) | |
_, prediction = pred.max(dim=1) | |
prediction_to_save = label2color(prediction.cpu().numpy().astype(np.uint8))[0] | |
return prediction_to_save | |
def Decoder1_optical_terrain(image_input): | |
with open('configs/fine_tuning_one_decoder.yaml', 'r') as f: | |
config = yaml.load(f, Loader=yaml.FullLoader) | |
model = models.make(config['model']).cpu() | |
sam_checkpoint = torch.load("./save/model_epoch_last.pth", map_location='cpu') | |
model.load_state_dict(sam_checkpoint, strict=False) | |
model.eval() | |
denorm = visual_utils.Denormalize(mean=[0.485, 0.456, 0.406],std=[0.229,0.224,0.225]) | |
label2color = visual_utils.Label2Color(cmap=visual_utils.color_map('Unify_Vai')) | |
# image_input.save(f'./save/visual_fair1m/input_img.png', quality=5) | |
img = transforms.Resize([1024, 1024])(image_input) | |
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229,0.224,0.225])]) | |
input_img = transform(img) | |
input_img = torch.unsqueeze(input_img, dim=0) | |
# input_img = transforms.ToTensor()(img).unsqueeze(0) | |
image_embedding = model.image_encoder(input_img) # torch.Size([1, 256, 64, 64]) | |
sparse_embeddings, dense_embeddings, scatter_embeddings = model.prompt_encoder( | |
points=None, | |
boxes=None, | |
masks=None, | |
scatter=None) | |
low_res_masks_instanse, iou_predictions = model.mask_decoder( | |
image_embeddings=image_embedding, | |
# image_embeddings=image_embedding.unsqueeze(0), | |
image_pe=model.prompt_encoder.get_dense_pe(), | |
sparse_prompt_embeddings=sparse_embeddings, | |
dense_prompt_embeddings=dense_embeddings, | |
# multimask_output=multimask_output, | |
multimask_output=False | |
) | |
# 地物类预测decoder | |
low_res_masks, iou_predictions_2 = model.mask_decoder_diwu( | |
image_embeddings=image_embedding, | |
image_pe=model.prompt_encoder.get_dense_pe(), | |
sparse_prompt_embeddings=sparse_embeddings, | |
dense_prompt_embeddings=dense_embeddings, | |
# multimask_output=False, | |
multimask_output=True, | |
) # B*C+1*H*W | |
pred_instance = model.postprocess_masks(low_res_masks_instanse, model.inp_size, model.inp_size) | |
pred = model.postprocess_masks(low_res_masks, model.inp_size, model.inp_size) | |
pred = torch.softmax(pred,dim=1) | |
pred_instance = torch.softmax(pred_instance,dim=1) | |
_, prediction = pred.max(dim=1) | |
prediction[prediction==12]=0 #把第二个decoder里得背景变成0 | |
print(torch.unique(prediction)) | |
_, prediction_instance = pred_instance.max(dim=1) | |
print(torch.unique(prediction_instance)) | |
prediction_sum = prediction + prediction_instance #没有冲突的位置就会正常猜测 | |
print(torch.unique(prediction_sum)) | |
prediction_tmp = prediction_sum.clone() | |
prediction_tmp[prediction_tmp==1] = 255 | |
prediction_tmp[prediction_tmp==2] = 255 | |
prediction_tmp[prediction_tmp==5] = 255 | |
prediction_tmp[prediction_tmp==6] = 255 | |
prediction_tmp[prediction_tmp==14] = 255 | |
# prediction_tmp[prediction_tmp==0] = 255 #同时是背景 | |
# index = prediction_tmp != 255 | |
pred[:, 0][prediction_tmp == 255]=100 #把已经决定的像素位置的背景预测概率设置为最大 | |
pred_instance[:, 0][prediction_tmp == 255]=100#把已经决定的像素位置的背景预测概率设置为最大 | |
buchong = torch.zeros([1,2,1024,1024]) | |
pred = torch.cat((pred, buchong),dim=1) | |
# print(torch.unique(torch.argmax(pred,dim=1))) | |
# Decoder1_logits = torch.zeros([1,15,1024,1024]).cuda() | |
Decoder2_logits = torch.zeros([1,15,1024,1024]) | |
Decoder2_logits[:,0,...] = pred[:,0,...] | |
Decoder2_logits[:,5,...] = pred_instance[:,5,...] | |
Decoder2_logits[:,14,...] = pred_instance[:,14,...] | |
Decoder2_logits[:,1,...] = pred[:,1,...] | |
Decoder2_logits[:,2,...] = pred[:,2,...] | |
Decoder2_logits[:,6,...] = pred[:,6,...] | |
# Decoder_logits = Decoder1_logits+Decoder2_logits | |
pred_chongtu = torch.argmax(Decoder2_logits, dim=1) | |
# pred_pred = torch.argmax(Decoder1_logits, dim=1) | |
pred_predinstance = torch.argmax(Decoder2_logits, dim=1) | |
print(torch.unique(pred_chongtu)) | |
pred_chongtu[prediction_tmp == 255] = 0 | |
prediction_sum[prediction_tmp!=255] = 0 | |
prediction_final = (pred_chongtu + prediction_sum).cpu().numpy() | |
prediction_to_save = label2color(prediction_final)[0] | |
return prediction_to_save | |
def Multi_box_prompts(input_prompt): | |
with open('configs/fine_tuning_one_decoder.yaml', 'r') as f: | |
config = yaml.load(f, Loader=yaml.FullLoader) | |
model = models.make(config['model']).cpu() | |
sam_checkpoint = torch.load("./save/model_epoch_last.pth", map_location='cpu') | |
model.load_state_dict(sam_checkpoint, strict=False) | |
model.eval() | |
label2color = visual_utils.Label2Color(cmap=visual_utils.color_map('Unify_double')) | |
# image_input.save(f'./save/visual_fair1m/input_img.png', quality=5) | |
img = transforms.Resize([1024, 1024])(input_prompt["image"]) | |
input_img = transforms.ToTensor()(img).unsqueeze(0) | |
image_embedding = model.image_encoder(input_img) # torch.Size([1, 256, 64, 64]) | |
sparse_embeddings, dense_embeddings, scatter_embeddings = model.prompt_encoder( | |
points=None, | |
boxes=None, | |
masks=None, | |
scatter=None) | |
# 目标类预测decoder | |
low_res_masks, iou_predictions = model.mask_decoder( | |
image_embeddings=image_embedding, | |
image_pe=model.prompt_encoder.get_dense_pe(), | |
sparse_prompt_embeddings=sparse_embeddings, | |
dense_prompt_embeddings=dense_embeddings, | |
multimask_output=False | |
) | |
pred = model.postprocess_masks(low_res_masks, model.inp_size, model.inp_size) | |
_, prediction = pred.max(dim=1) | |
prediction_to_save = label2color(prediction.cpu().numpy().astype(np.uint8))[0] | |
def find_instance(image_map): | |
BACKGROUND = 0 | |
steps = [[1, 0], [0, 1], [-1, 0], [0, -1], [1, 1], [1, -1], [-1, 1], [-1, -1]] | |
instances = [] | |
def bfs(x, y, category_id): | |
nonlocal image_map, steps | |
instance = {(x, y)} | |
q = [(x, y)] | |
image_map[x, y] = BACKGROUND | |
while len(q) > 0: | |
x, y = q.pop(0) | |
# print(x, y, image_map[x][y]) | |
for step in steps: | |
xx = step[0] + x | |
yy = step[1] + y | |
if 0 <= xx < len(image_map) and 0 <= yy < len(image_map[0]) \ | |
and image_map[xx][yy] == category_id: # and (xx, yy) not in q: | |
q.append((xx, yy)) | |
instance.add((xx, yy)) | |
image_map[xx, yy] = BACKGROUND | |
return instance | |
image_map = image_map[:] | |
for i in range(len(image_map)): | |
for j in range(len(image_map[i])): | |
category_id = image_map[i][j] | |
if category_id == BACKGROUND: | |
continue | |
instances.append(bfs(i, j, category_id)) | |
return instances | |
prompts = find_instance(np.uint8(np.array(input_prompt["mask"]).sum(-1) != 0)) | |
img_mask = np.array(img).copy() | |
def get_box(prompt): | |
xs = [] | |
ys = [] | |
for x, y in prompt: | |
xs.append(x) | |
ys.append(y) | |
return [[min(xs), min(ys)], [max(xs), max(ys)]] | |
def in_box(point, box): | |
left_up, right_down = box | |
x, y = point | |
return x >= left_up[0] and x <= right_down[0] and y >= left_up[1] and y <= right_down[1] | |
def draw_box(box_outer, img, radius=4): | |
radius -= 1 | |
left_up_outer, right_down_outer = box_outer | |
box_inner = [list(np.array(left_up_outer) + radius), | |
list(np.array(right_down_outer) - radius)] | |
for x in range(len(img)): | |
for y in range(len(img[x])): | |
if in_box([x, y], box_outer): | |
img_mask[x, y] = (1, 1, 1) | |
if in_box([x, y], box_outer) and (not in_box([x, y], box_inner)): | |
img[x, y] = (255, 0, 0) | |
return img | |
for prompt in prompts: | |
box = get_box(prompt) | |
output = draw_box(box, prediction_to_save) * (img_mask==1) | |
return output | |
def Decoder2_SAR(SAR_image, SAR_prompt): | |
with open('configs/multi_mo_multi_task_sar_prompt.yaml', 'r') as f: | |
config = yaml.load(f, Loader=yaml.FullLoader) | |
model = models.make(config['model']).cpu() | |
sam_checkpoint = torch.load("./save/SAR/model_epoch_last.pth", map_location='cpu') | |
model.load_state_dict(sam_checkpoint, strict=True) | |
model.eval() | |
denorm = visual_utils.Denormalize(mean=[0.485, 0.456, 0.406],std=[0.229,0.224,0.225]) | |
label2color = visual_utils.Label2Color(cmap=visual_utils.color_map('Unify_YIJISAR')) | |
img = transforms.Resize([1024, 1024])(SAR_image) | |
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229,0.224,0.225])]) | |
input_img = transform(img) | |
input_img = torch.unsqueeze(input_img, dim=0) | |
# input_img = transforms.ToTensor()(img).unsqueeze(0) | |
# input_img = transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229,0.224,0.225]) | |
filp_flag = torch.Tensor([False]) | |
image_embedding = model.image_encoder(input_img) | |
# scattter_prompt = cv2.imread(scatter_file_, cv2.IMREAD_UNCHANGED) | |
# scattter_prompt = get_prompt_inp_scatter(name[0].replace('gt', 'JIHUAFENJIE')) | |
SAR_prompt = cv2.imread(SAR_prompt, cv2.IMREAD_UNCHANGED) | |
scatter_torch = pre_scatter_prompt(SAR_prompt, filp_flag, device=input_img.device) | |
scatter_torch = scatter_torch.unsqueeze(0) | |
scatter_torch = torch.nn.functional.interpolate(scatter_torch, size=(256, 256)) | |
sparse_embeddings, dense_embeddings, scatter_embeddings = model.prompt_encoder( | |
points=None, | |
boxes=None, | |
masks=None, | |
scatter=scatter_torch) | |
# 地物类预测decoder | |
low_res_masks, iou_predictions_2 = model.mask_decoder_diwu( | |
image_embeddings=image_embedding, | |
image_pe=model.prompt_encoder.get_dense_pe(), | |
sparse_prompt_embeddings=sparse_embeddings, | |
dense_prompt_embeddings=dense_embeddings, | |
# multimask_output=False, | |
multimask_output=True, | |
) # B*C+1*H*W | |
pred = model.postprocess_masks(low_res_masks, model.inp_size, model.inp_size) | |
_, prediction = pred.max(dim=1) | |
prediction = prediction.cpu().numpy() | |
prediction_to_save = label2color(prediction)[0] | |
return prediction_to_save | |
examples1_instance = [ | |
['./images/optical/isaid/_P0007_1065_319_image.png'], | |
['./images/optical/isaid/_P0466_1068_420_image.png'], | |
['./images/optical/isaid/_P0897_146_34_image.png'], | |
['./images/optical/isaid/_P1397_844_904_image.png'], | |
['./images/optical/isaid/_P2645_883_965_image.png'], | |
['./images/optical/isaid/_P1398_1290_630_image.png'] | |
] | |
examples1_terrain = [ | |
['./images/optical/vaihingen/top_mosaic_09cm_area2_105_image.png'], | |
['./images/optical/vaihingen/top_mosaic_09cm_area4_227_image.png'], | |
['./images/optical/vaihingen/top_mosaic_09cm_area20_142_image.png'], | |
['./images/optical/vaihingen/top_mosaic_09cm_area24_128_image.png'], | |
['./images/optical/vaihingen/top_mosaic_09cm_area27_34_image.png'] | |
] | |
examples1_multi_box = [ | |
['./images/optical/isaid/_P0007_1065_319_image.png'], | |
['./images/optical/isaid/_P0466_1068_420_image.png'], | |
['./images/optical/isaid/_P0897_146_34_image.png'], | |
['./images/optical/isaid/_P1397_844_904_image.png'], | |
['./images/optical/isaid/_P2645_883_965_image.png'], | |
['./images/optical/isaid/_P1398_1290_630_image.png'] | |
] | |
examples2 = [ | |
['./images/sar/YIJISARGF3_MYN_QPSI_001269_E113.2_N23.0_20161105_L1A_L10002009158_ampl_4_image.png', './images/sar/YIJISARGF3_MYN_QPSI_001269_E113.2_N23.0_20161105_L1A_L10002009158_ampl_4.png'], | |
['./images/sar/YIJISARGF3_MYN_QPSI_001269_E113.2_N23.0_20161105_L1A_L10002009158_ampl_15_image.png', './images/sar/YIJISARGF3_MYN_QPSI_001269_E113.2_N23.0_20161105_L1A_L10002009158_ampl_15.png'], | |
['./images/sar/YIJISARGF3_MYN_QPSI_001269_E113.2_N23.0_20161105_L1A_L10002009158_ampl_24_image.png', './images/sar/YIJISARGF3_MYN_QPSI_001269_E113.2_N23.0_20161105_L1A_L10002009158_ampl_24.png'], | |
['./images/sar/YIJISARGF3_MYN_QPSI_001269_E113.2_N23.0_20161105_L1A_L10002009158_ampl_41_image.png', './images/sar/YIJISARGF3_MYN_QPSI_001269_E113.2_N23.0_20161105_L1A_L10002009158_ampl_41.png'], | |
['./images/sar/YIJISARGF3_MYN_QPSI_999996_E121.2_N30.3_20160815_L1A_L10002015572_ampl_150_image.png', './images/sar/YIJISARGF3_MYN_QPSI_999996_E121.2_N30.3_20160815_L1A_L10002015572_ampl_150.png'] | |
] | |
# RingMo-SAM designs two new promptable forms based on the characteristics of multimodal remote sensing images: | |
# multi-boxes prompt and SAR polarization scatter prompt. | |
title = "RingMo-SAM:A Foundation Model for Segment Anything in Multimodal Remote Sensing Images<br> \ | |
<div align='center'> \ | |
<h2><a href='https://ieeexplore.ieee.org/document/10315957' target='_blank' rel='noopener'>[paper]</a> \ | |
<br> \ | |
<image src='file/RingMo-SAM.gif' width='720px' /> \ | |
<h2>RingMo-SAM can not only segment anything in optical and SAR remote sensing data, but also identify object categories.<h2> \ | |
</div> \ | |
" | |
# <a href='https://github.com/AICyberTeam' target='_blank' rel='noopener'>[code]</a></h2> \ | |
# with gr.Blocks() as demo: | |
# image_input = gr.Image(type='pil', label='Input Img') | |
# image_output = gr.Image(label='Segment Result', type='numpy') | |
Decoder_optical_instance_io = gr.Interface(fn=Decoder1_optical_instance, | |
inputs=[gr.Image(type='pil', label='optical_instance_img(光学图像)')], | |
outputs=[gr.Image(label='segment_result', type='numpy')], | |
# title=title, | |
description="<p> \ | |
Instance_Decoder:<br>\ | |
Instance-type objects (such as vehicle, aircraft, ship, etc.) have a smaller proportion. <br>\ | |
Our decoder can decouple the SAM's mask decoder into instance category decoder and terrain category decoder to ensure that the model fits adequately to both types of data. <br>\ | |
Choose an example below, or, upload optical instance images to be tested. <br>\ | |
Examples below were never trained and are randomly selected for testing in the wild. <br>\ | |
</p>", | |
allow_flagging='auto', | |
examples=examples1_instance, | |
cache_examples=False, | |
) | |
Decoder_optical_terrain_io = gr.Interface(fn=Decoder1_optical_terrain, | |
inputs=[gr.Image(type='pil', label='optical_terrain_img(光学图像)')], | |
# inputs=[gr.Image(type='pil', label='optical_img(光学图像)'), gr.Image(type='pil', label='SAR_img(SAR图像)'), gr.Image(type='pil', label='SAR_prompt(偏振散射提示)')], | |
outputs=[gr.Image(label='segment_result', type='numpy')], | |
# title=title, | |
description="<p> \ | |
Terrain_Decoder:<br>\ | |
Terrain-type objects (such as vegetation, land, river, etc.) have a larger proportion. <br>\ | |
Our decoder can decouple the SAM's mask decoder into instance category decoder and terrain category decoder to ensure that the model fits adequately to both types of data. <br>\ | |
Choose an example below, or, upload optical terrain images to be tested. <br>\ | |
Examples below were never trained and are randomly selected for testing in the wild. <br>\ | |
</p>", | |
allow_flagging='auto', | |
examples=examples1_terrain, | |
cache_examples=False, | |
) | |
Decoder_multi_box_prompts_io = gr.Interface(fn=Multi_box_prompts, | |
inputs=[gr.ImageMask(brush_radius=4, type='pil', label='input_img(图像)')], | |
outputs=[gr.Image(label='segment_result', type='numpy')], | |
# title=title, | |
description="<p> \ | |
Multi-box Prompts:<br>\ | |
Multiple boxes are sequentially encoded as concated sparse high-dimensional feature embedding, \ | |
the corresponding multiple high-dimensional features are concated together into a high-dimensional feature vector as part of the sparse embedding. <br>\ | |
Choose an example below, or, upload images to be tested, and then draw multi-boxes. <br>\ | |
Examples below were never trained and are randomly selected for testing in the wild. <br>\ | |
</p>", | |
allow_flagging='auto', | |
examples=examples1_multi_box, | |
cache_examples=False, | |
) | |
Decoder_SAR_io = gr.Interface(fn=Decoder2_SAR, | |
inputs=[gr.Image(type='pil', label='SAR_img(SAR图像)'), gr.Image(type='filepath', label='SAR_prompt(偏振散射提示)')], | |
outputs=[gr.Image(label='segment_result', type='numpy')], | |
description="<p> \ | |
SAR Polarization Scatter Prompts:<br>\ | |
Different terrain categories usually exhibit different scattering properties. \ | |
Therefore, we code network for coded mapping of these SAR polarization scatter prompts to the corresponding SAR images, \ | |
which improves the segmentation results of SAR images. <br>\ | |
Choose an example below, or, upload SAR images and the corresponding polarization scatter prompts to be tested. <br>\ | |
Examples below were never trained and are randomly selected for testing in the wild. <br>\ | |
</p>", | |
allow_flagging='auto', | |
examples=examples2, | |
cache_examples=False, | |
) | |
# Decoder1_io.launch(server_name="0.0.0.0", server_port=34311) | |
# Decoder1_io.launch(enable_queue=False) | |
# demo = gr.TabbedInterface([Decoder1_io, Decoder2_io], ['Instance_Decoder', 'Terrain_Decoder'], title=title) | |
demo = gr.TabbedInterface([Decoder_optical_instance_io, Decoder_optical_terrain_io, Decoder_multi_box_prompts_io, Decoder_SAR_io], ['optical_instance_img(光学图像)', 'optical_terrain_img(光学图像)', 'multi_box_prompts(多框提示)', 'SAR_img(偏振散射提示)'], title=title).launch() | |
# - |