AI-Journey2 commited on
Commit
ab70f27
1 Parent(s): d702758

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -324
app.py CHANGED
@@ -1,327 +1,28 @@
1
- import gradio as gr
2
  import requests
3
- import time
4
- import json
5
- import base64
6
- import os
7
  from io import BytesIO
8
- import html
9
- import re
10
-
11
-
12
-
13
- class Prodia:
14
- def __init__(self, api_key, base=None):
15
- self.base = base or "https://api.prodia.com/v1"
16
- self.headers = {
17
- "X-Prodia-Key": api_key
18
- }
19
-
20
- def generate(self, params):
21
- response = self._post(f"{self.base}/sd/generate", params)
22
- return response.json()
23
-
24
- def transform(self, params):
25
- response = self._post(f"{self.base}/sd/transform", params)
26
- return response.json()
27
-
28
- def controlnet(self, params):
29
- response = self._post(f"{self.base}/sd/controlnet", params)
30
- return response.json()
31
-
32
- def get_job(self, job_id):
33
- response = self._get(f"{self.base}/job/{job_id}")
34
- return response.json()
35
-
36
- def wait(self, job):
37
- job_result = job
38
-
39
- while job_result['status'] not in ['succeeded', 'failed']:
40
- time.sleep(0.25)
41
- job_result = self.get_job(job['job'])
42
-
43
- return job_result
44
-
45
- def list_models(self):
46
- response = self._get(f"{self.base}/sd/models")
47
- return response.json()
48
-
49
- def list_samplers(self):
50
- response = self._get(f"{self.base}/sd/samplers")
51
- return response.json()
52
-
53
- def _post(self, url, params):
54
- headers = {
55
- **self.headers,
56
- "Content-Type": "application/json"
57
- }
58
- response = requests.post(url, headers=headers, data=json.dumps(params))
59
-
60
- if response.status_code != 200:
61
- raise Exception(f"Bad Prodia Response: {response.status_code}")
62
-
63
- return response
64
-
65
- def _get(self, url):
66
- response = requests.get(url, headers=self.headers)
67
-
68
- if response.status_code != 200:
69
- raise Exception(f"Bad Prodia Response: {response.status_code}")
70
-
71
- return response
72
-
73
-
74
- def image_to_base64(image):
75
- # Convert the image to bytes
76
- buffered = BytesIO()
77
- image.save(buffered, format="PNG") # You can change format to PNG if needed
78
-
79
- # Encode the bytes to base64
80
- img_str = base64.b64encode(buffered.getvalue())
81
-
82
- return img_str.decode('utf-8') # Convert bytes to string
83
-
84
-
85
- def remove_id_and_ext(text):
86
- text = re.sub(r'\[.*\]$', '', text)
87
- extension = text[-12:].strip()
88
- if extension == "safetensors":
89
- text = text[:-13]
90
- elif extension == "ckpt":
91
- text = text[:-4]
92
- return text
93
-
94
-
95
- def get_data(text):
96
- results = {}
97
- patterns = {
98
- 'prompt': r'(.*)',
99
- 'negative_prompt': r'Negative prompt: (.*)',
100
- 'steps': r'Steps: (\d+),',
101
- 'seed': r'Seed: (\d+),',
102
- 'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)',
103
- 'model': r'Model:\s*([^\s,]+)',
104
- 'cfg_scale': r'CFG scale:\s*([\d\.]+)',
105
- 'size': r'Size:\s*([0-9]+x[0-9]+)'
106
- }
107
- for key in ['prompt', 'negative_prompt', 'steps', 'seed', 'sampler', 'model', 'cfg_scale', 'size']:
108
- match = re.search(patterns[key], text)
109
- if match:
110
- results[key] = match.group(1)
111
- else:
112
- results[key] = None
113
- if results['size'] is not None:
114
- w, h = results['size'].split("x")
115
- results['w'] = w
116
- results['h'] = h
117
- else:
118
- results['w'] = None
119
- results['h'] = None
120
- return results
121
-
122
-
123
- def send_to_txt2img(image):
124
-
125
- result = {tabs: gr.update(selected="t2i")}
126
-
127
- try:
128
- text = image.info['parameters']
129
- data = get_data(text)
130
- result[prompt] = gr.update(value=data['prompt'])
131
- result[negative_prompt] = gr.update(value=data['negative_prompt']) if data['negative_prompt'] is not None else gr.update()
132
- result[steps] = gr.update(value=int(data['steps'])) if data['steps'] is not None else gr.update()
133
- result[seed] = gr.update(value=int(data['seed'])) if data['seed'] is not None else gr.update()
134
- result[cfg_scale] = gr.update(value=float(data['cfg_scale'])) if data['cfg_scale'] is not None else gr.update()
135
- result[width] = gr.update(value=int(data['w'])) if data['w'] is not None else gr.update()
136
- result[height] = gr.update(value=int(data['h'])) if data['h'] is not None else gr.update()
137
- result[sampler] = gr.update(value=data['sampler']) if data['sampler'] is not None else gr.update()
138
- if model in model_names:
139
- result[model] = gr.update(value=model_names[model])
140
- else:
141
- result[model] = gr.update()
142
- return result
143
-
144
- except Exception as e:
145
- print(e)
146
-
147
- return result
148
-
149
-
150
- prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY"))
151
- model_list = prodia_client.list_models()
152
- model_names = {}
153
-
154
- for model_name in model_list:
155
- name_without_ext = remove_id_and_ext(model_name)
156
- model_names[name_without_ext] = model_name
157
-
158
-
159
- def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
160
- result = prodia_client.generate({
161
- "prompt": prompt,
162
- "negative_prompt": negative_prompt,
163
- "model": model,
164
- "steps": steps,
165
- "sampler": sampler,
166
- "cfg_scale": cfg_scale,
167
- "width": width,
168
- "height": height,
169
- "seed": seed
170
- })
171
-
172
- job = prodia_client.wait(result)
173
-
174
- return job["imageUrl"]
175
-
176
-
177
- def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed):
178
- result = prodia_client.transform({
179
- "imageData": image_to_base64(input_image),
180
- "denoising_strength": denoising,
181
- "prompt": prompt,
182
- "negative_prompt": negative_prompt,
183
- "model": model,
184
- "steps": steps,
185
- "sampler": sampler,
186
- "cfg_scale": cfg_scale,
187
- "width": width,
188
- "height": height,
189
- "seed": seed
190
- })
191
-
192
- job = prodia_client.wait(result)
193
-
194
- return job["imageUrl"]
195
-
196
-
197
- css = """
198
- #generate {
199
- height: 100%;
200
- }
201
- """
202
-
203
- with gr.Blocks(css=css) as demo:
204
- with gr.Row():
205
- with gr.Column(scale=6):
206
- model = gr.Dropdown(interactive=True,value="absolutereality_v181.safetensors [3d9d4d2b]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models())
207
-
208
- with gr.Column(scale=1):
209
- gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI.<br>Powered by [Prodia](https://prodia.com).<br>For more features and faster generation times check out our [API Docs](https://docs.prodia.com/reference/getting-started-guide).")
210
-
211
- with gr.Tabs() as tabs:
212
- with gr.Tab("txt2img", id='t2i'):
213
- with gr.Row():
214
- with gr.Column(scale=6, min_width=600):
215
- prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3)
216
- negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
217
- with gr.Column():
218
- text_button = gr.Button("Generate", variant='primary', elem_id="generate")
219
-
220
- with gr.Row():
221
- with gr.Column(scale=3):
222
- with gr.Tab("Generation"):
223
- with gr.Row():
224
- with gr.Column(scale=1):
225
- sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
226
-
227
- with gr.Column(scale=1):
228
- steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
229
-
230
- with gr.Row():
231
- with gr.Column(scale=1):
232
- width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
233
- height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
234
-
235
- with gr.Column(scale=1):
236
- batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
237
- batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
238
-
239
- cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
240
- seed = gr.Number(label="Seed", value=-1)
241
-
242
- with gr.Column(scale=2):
243
- image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")
244
-
245
- text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height,
246
- seed], outputs=image_output, concurrency_limit=64)
247
-
248
- with gr.Tab("img2img", id='i2i'):
249
- with gr.Row():
250
- with gr.Column(scale=6, min_width=600):
251
- i2i_prompt = gr.Textbox("space warrior, beautiful, female, ultrarealistic, soft lighting, 8k", placeholder="Prompt", show_label=False, lines=3)
252
- i2i_negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly")
253
- with gr.Column():
254
- i2i_text_button = gr.Button("Generate", variant='primary', elem_id="generate")
255
-
256
- with gr.Row():
257
- with gr.Column(scale=3):
258
- with gr.Tab("Generation"):
259
- i2i_image_input = gr.Image(type="pil")
260
-
261
- with gr.Row():
262
- with gr.Column(scale=1):
263
- i2i_sampler = gr.Dropdown(value="Euler a", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers())
264
-
265
- with gr.Column(scale=1):
266
- i2i_steps = gr.Slider(label="Sampling Steps", minimum=1, maximum=25, value=20, step=1)
267
-
268
- with gr.Row():
269
- with gr.Column(scale=1):
270
- i2i_width = gr.Slider(label="Width", maximum=1024, value=512, step=8)
271
- i2i_height = gr.Slider(label="Height", maximum=1024, value=512, step=8)
272
-
273
- with gr.Column(scale=1):
274
- i2i_batch_size = gr.Slider(label="Batch Size", maximum=1, value=1)
275
- i2i_batch_count = gr.Slider(label="Batch Count", maximum=1, value=1)
276
-
277
- i2i_cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, value=7, step=1)
278
- i2i_denoising = gr.Slider(label="Denoising Strength", minimum=0, maximum=1, value=0.7, step=0.1)
279
- i2i_seed = gr.Number(label="Seed", value=-1)
280
-
281
- with gr.Column(scale=2):
282
- i2i_image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png")
283
-
284
- i2i_text_button.click(img2img, inputs=[i2i_image_input, i2i_denoising, i2i_prompt, i2i_negative_prompt,
285
- model, i2i_steps, i2i_sampler, i2i_cfg_scale, i2i_width, i2i_height,
286
- i2i_seed], outputs=i2i_image_output, concurrency_limit=64)
287
-
288
- with gr.Tab("PNG Info"):
289
- def plaintext_to_html(text, classname=None):
290
- content = "<br>\n".join(html.escape(x) for x in text.split('\n'))
291
-
292
- return f"<p class='{classname}'>{content}</p>" if classname else f"<p>{content}</p>"
293
-
294
-
295
- def get_exif_data(image):
296
- items = image.info
297
-
298
- info = ''
299
- for key, text in items.items():
300
- info += f"""
301
- <div>
302
- <p><b>{plaintext_to_html(str(key))}</b></p>
303
- <p>{plaintext_to_html(str(text))}</p>
304
- </div>
305
- """.strip()+"\n"
306
-
307
- if len(info) == 0:
308
- message = "Nothing found in the image."
309
- info = f"<div><p>{message}<p></div>"
310
-
311
- return info
312
-
313
- with gr.Row():
314
- with gr.Column():
315
- image_input = gr.Image(type="pil")
316
-
317
- with gr.Column():
318
- exif_output = gr.HTML(label="EXIF Data")
319
- send_to_txt2img_btn = gr.Button("Send to txt2img")
320
-
321
- image_input.upload(get_exif_data, inputs=[image_input], outputs=exif_output)
322
- send_to_txt2img_btn.click(send_to_txt2img, inputs=[image_input], outputs=[tabs, prompt, negative_prompt,
323
- steps, seed, model, sampler,
324
- width, height, cfg_scale],
325
- concurrency_limit=64)
326
 
327
- demo.queue(max_size=80, api_open=False).launch(max_threads=256, show_api=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import requests
2
+ from PIL import Image
3
+ import gradio as gr
 
 
4
  from io import BytesIO
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ url = "https://stablediffusionapi.com/api/v3/text2img"
7
+ title = """&lt;h2&gt;&lt;center&gt;Text to Image Generation with Stable Diffusion API&lt;/center&gt;&lt;/h2&gt;"""
8
+ description = """#### Get the API key by signing up here [Stable Diffusion API](https://stablediffusionapi.com)."""
9
+
10
+ def get_image(key, prompt, inference_steps, filter):
11
+ payload = {
12
+ "key": key,
13
+ "prompt": prompt,
14
+ "negative_prompt": "((out of frame)), ((extra fingers)), mutated hands, ((poorly drawn hands)), ((poorly drawn face)), (((mutation))), (((deformed))), (((tiling))), ((naked)), ((tile)), ((fleshpile)), ((ugly)), (((abstract))), blurry, ((bad anatomy)), ((bad proportions)), ((extra limbs)), cloned face, (((skinny))), glitchy, ((extra breasts)), ((double torso)), ((extra arms)), ((extra hands)), ((mangled fingers)), ((missing breasts)), (missing lips), ((ugly face)), ((fat)), ((extra legs)), anime",
15
+ "width": "512",
16
+ "height": "512",
17
+ "samples": "1",
18
+ "num_inference_steps": inference_steps,"safety_checker": filter,"enhance_prompt": "yes","guidance_scale": 7.5}
19
+ headers = {}
20
+ response = requests.request("POST", url, headers=headers, data=payload)
21
+ url1 = str(json.loads(response.text)['output'][0])
22
+ r = requests.get(url1)
23
+ i = Image.open(BytesIO(r.content))
24
+ return i
25
+
26
+ demo = gr.Interface(fn=get_image,
27
+ inputs = [gr.Textbox(label="Enter API key"), gr.Textbox(label="Enter the Prompt"), gr.Number(label="Enter number of steps"),gr.Checkbox(label="Safety filter")],
28
+ outputs = gr.Image(type='pil'), title = title, description = description).launch(debug='True')