|
import gradio as gr |
|
from gradio.outputs import Label |
|
import cv2 |
|
import requests |
|
import os |
|
import numpy as np |
|
|
|
from ultralytics import YOLO |
|
import yolov5 |
|
|
|
|
|
|
|
def yolov5_inference( |
|
image: gr.inputs.Image = None, |
|
model_path: gr.inputs.Dropdown = None, |
|
image_size: gr.inputs.Slider = 640, |
|
conf_threshold: gr.inputs.Slider = 0.25, |
|
iou_threshold: gr.inputs.Slider = 0.45 ): |
|
|
|
|
|
model = yolov5.load(model_path, device="cpu") |
|
|
|
|
|
model.conf = conf_threshold |
|
model.iou = iou_threshold |
|
|
|
|
|
results = model([image], size=image_size) |
|
|
|
|
|
crops = results.crop(save=False) |
|
img_crops = [] |
|
for i in range(len(crops)): |
|
img_crops.append(crops[i]["im"][..., ::-1]) |
|
return results.render()[0] |
|
|
|
|
|
|
|
inputs = [ |
|
gr.inputs.Image(type="pil", label="Input Image"), |
|
gr.inputs.Dropdown(["PPE_Safety_Y5.pt"], label="Model", default = 'PPE_Safety_Y5.pt'), |
|
gr.inputs.Slider(minimum=320, maximum=1280, default=640, step=32, label="Image Size"), |
|
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), |
|
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), |
|
] |
|
|
|
|
|
outputs = gr.outputs.Image(type="filepath", label="Output Image") |
|
|
|
|
|
title = "Identify violations of Personal Protective Equipment (PPE) protocols for improved safety" |
|
|
|
|
|
examples = [['image_1.jpg', 'PPE_Safety_Y5.pt', 640, 0.35, 0.45] |
|
,['image_0.jpg', 'PPE_Safety_Y5.pt', 640, 0.35, 0.45] |
|
,['image_2.jpg', 'PPE_Safety_Y5.pt', 640, 0.35, 0.45], |
|
] |
|
|
|
|
|
demo_app = gr.Interface( |
|
fn=yolov5_inference, |
|
inputs=inputs, |
|
outputs=outputs, |
|
title=title, |
|
examples=examples, |
|
cache_examples=True, |
|
live=True, |
|
theme='huggingface', |
|
) |
|
demo_app.launch(debug=True, enable_queue=True, width=50, height=50) |