|
--- |
|
title: Fastapi Dummy |
|
emoji: 🐢 |
|
colorFrom: purple |
|
colorTo: blue |
|
sdk: docker |
|
pinned: false |
|
--- |
|
|
|
# PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method |
|
|
|
[![](https://github.com/AI4EPS/PhaseNet/workflows/documentation/badge.svg)](https://ai4eps.github.io/PhaseNet) |
|
|
|
## 1. Install [miniconda](https://docs.conda.io/en/latest/miniconda.html) and requirements |
|
- Download PhaseNet repository |
|
```bash |
|
git clone https://github.com/wayneweiqiang/PhaseNet.git |
|
cd PhaseNet |
|
``` |
|
- Install to default environment |
|
```bash |
|
conda env update -f=env.yml -n base |
|
``` |
|
- Install to "phasenet" virtual envirionment |
|
```bash |
|
conda env create -f env.yml |
|
conda activate phasenet |
|
``` |
|
|
|
## 2. Pre-trained model |
|
Located in directory: **model/190703-214543** |
|
|
|
## 3. Related papers |
|
- Zhu, Weiqiang, and Gregory C. Beroza. "PhaseNet: A Deep-Neural-Network-Based Seismic Arrival Time Picking Method." arXiv preprint arXiv:1803.03211 (2018). |
|
- Liu, Min, et al. "Rapid characterization of the July 2019 Ridgecrest, California, earthquake sequence from raw seismic data using machine‐learning phase picker." Geophysical Research Letters 47.4 (2020): e2019GL086189. |
|
- Park, Yongsoo, et al. "Machine‐learning‐based analysis of the Guy‐Greenbrier, Arkansas earthquakes: A tale of two sequences." Geophysical Research Letters 47.6 (2020): e2020GL087032. |
|
- Chai, Chengping, et al. "Using a deep neural network and transfer learning to bridge scales for seismic phase picking." Geophysical Research Letters 47.16 (2020): e2020GL088651. |
|
- Tan, Yen Joe, et al. "Machine‐Learning‐Based High‐Resolution Earthquake Catalog Reveals How Complex Fault Structures Were Activated during the 2016–2017 Central Italy Sequence." The Seismic Record 1.1 (2021): 11-19. |
|
|
|
## 4. Batch prediction |
|
See examples in the [notebook](https://github.com/wayneweiqiang/PhaseNet/blob/master/docs/example_batch_prediction.ipynb): [example_batch_prediction.ipynb](example_batch_prediction.ipynb) |
|
|
|
|
|
PhaseNet currently supports four data formats: mseed, sac, hdf5, and numpy. The test data can be downloaded here: |
|
``` |
|
wget https://github.com/wayneweiqiang/PhaseNet/releases/download/test_data/test_data.zip |
|
unzip test_data.zip |
|
``` |
|
|
|
- For mseed format: |
|
``` |
|
python phasenet/predict.py --model=model/190703-214543 --data_list=test_data/mseed.csv --data_dir=test_data/mseed --format=mseed --amplitude --response_xml=test_data/stations.xml --batch_size=1 --sampling_rate=100 --plot_figure |
|
``` |
|
``` |
|
python phasenet/predict.py --model=model/190703-214543 --data_list=test_data/mseed2.csv --data_dir=test_data/mseed --format=mseed --amplitude --response_xml=test_data/stations.xml --batch_size=1 --sampling_rate=100 --plot_figure |
|
``` |
|
|
|
- For sac format: |
|
``` |
|
python phasenet/predict.py --model=model/190703-214543 --data_list=test_data/sac.csv --data_dir=test_data/sac --format=sac --batch_size=1 --plot_figure |
|
``` |
|
|
|
- For numpy format: |
|
``` |
|
python phasenet/predict.py --model=model/190703-214543 --data_list=test_data/npz.csv --data_dir=test_data/npz --format=numpy --plot_figure |
|
``` |
|
|
|
- For hdf5 format: |
|
``` |
|
python phasenet/predict.py --model=model/190703-214543 --hdf5_file=test_data/data.h5 --hdf5_group=data --format=hdf5 --plot_figure |
|
``` |
|
|
|
- For a seismic array (used by [QuakeFlow](https://github.com/wayneweiqiang/QuakeFlow)): |
|
``` |
|
python phasenet/predict.py --model=model/190703-214543 --data_list=test_data/mseed_array.csv --data_dir=test_data/mseed_array --stations=test_data/stations.json --format=mseed_array --amplitude |
|
``` |
|
|
|
Notes: |
|
|
|
1. The reason for using "--batch_size=1" is because the mseed or sac files usually are not the same length. If you want to use a larger batch size for a good prediction speed, you need to cut the data to the same length. |
|
|
|
2. Remove the "--plot_figure" argument for large datasets, because plotting can be very slow. |
|
|
|
Optional arguments: |
|
``` |
|
usage: predict.py [-h] [--batch_size BATCH_SIZE] [--model_dir MODEL_DIR] |
|
[--data_dir DATA_DIR] [--data_list DATA_LIST] |
|
[--hdf5_file HDF5_FILE] [--hdf5_group HDF5_GROUP] |
|
[--result_dir RESULT_DIR] [--result_fname RESULT_FNAME] |
|
[--min_p_prob MIN_P_PROB] [--min_s_prob MIN_S_PROB] |
|
[--mpd MPD] [--amplitude] [--format FORMAT] |
|
[--s3_url S3_URL] [--stations STATIONS] [--plot_figure] |
|
[--save_prob] |
|
|
|
optional arguments: |
|
-h, --help show this help message and exit |
|
--batch_size BATCH_SIZE |
|
batch size |
|
--model_dir MODEL_DIR |
|
Checkpoint directory (default: None) |
|
--data_dir DATA_DIR Input file directory |
|
--data_list DATA_LIST |
|
Input csv file |
|
--hdf5_file HDF5_FILE |
|
Input hdf5 file |
|
--hdf5_group HDF5_GROUP |
|
data group name in hdf5 file |
|
--result_dir RESULT_DIR |
|
Output directory |
|
--result_fname RESULT_FNAME |
|
Output file |
|
--min_p_prob MIN_P_PROB |
|
Probability threshold for P pick |
|
--min_s_prob MIN_S_PROB |
|
Probability threshold for S pick |
|
--mpd MPD Minimum peak distance |
|
--amplitude if return amplitude value |
|
--format FORMAT input format |
|
--stations STATIONS seismic station info |
|
--plot_figure If plot figure for test |
|
--save_prob If save result for test |
|
``` |
|
|
|
- The output picks are saved to "results/picks.csv" on default |
|
|
|
|file_name |begin_time |station_id|phase_index|phase_time |phase_score|phase_amp |phase_type| |
|
|-----------------|-----------------------|----------|-----------|-----------------------|-----------|----------------------|----------| |
|
|2020-10-01T00:00*|2020-10-01T00:00:00.003|CI.BOM..HH|14734 |2020-10-01T00:02:27.343|0.708 |2.4998866231208325e-14|P | |
|
|2020-10-01T00:00*|2020-10-01T00:00:00.003|CI.BOM..HH|15487 |2020-10-01T00:02:34.873|0.416 |2.4998866231208325e-14|S | |
|
|2020-10-01T00:00*|2020-10-01T00:00:00.003|CI.COA..HH|319 |2020-10-01T00:00:03.193|0.762 |3.708662269972206e-14 |P | |
|
|
|
Notes: |
|
1. The *phase_index* means which data point is the pick in the original sequence. So *phase_time* = *begin_time* + *phase_index* / *sampling rate*. The default *sampling_rate* is 100Hz |
|
|
|
|
|
## 5. QuakeFlow example |
|
A complete earthquake detection workflow can be found in the [QuakeFlow](https://wayneweiqiang.github.io/QuakeFlow/) project. |
|
|
|
## 6. Interactive example |
|
See details in the [notebook](https://github.com/wayneweiqiang/PhaseNet/blob/master/docs/example_gradio.ipynb): [example_interactive.ipynb](example_gradio.ipynb) |
|
|
|
## 7. Training |
|
- Download a small sample dataset: |
|
```bash |
|
wget https://github.com/wayneweiqiang/PhaseNet/releases/download/test_data/test_data.zip |
|
unzip test_data.zip |
|
``` |
|
- Start training from the pre-trained model |
|
``` |
|
python phasenet/train.py --model_dir=model/190703-214543/ --train_dir=test_data/npz --train_list=test_data/npz.csv --plot_figure --epochs=10 --batch_size=10 |
|
``` |
|
- Check results in the **log** folder |
|
|
|
|