EQNet / phasenet /predict.py
zhuwq0's picture
init
0eb79a8
import argparse
import logging
import multiprocessing
import os
import pickle
import time
from functools import partial
import h5py
import numpy as np
import pandas as pd
import tensorflow as tf
from data_reader import DataReader_mseed_array, DataReader_pred
from postprocess import (
extract_amplitude,
extract_picks,
save_picks,
save_picks_json,
save_prob_h5,
)
from tqdm import tqdm
from visulization import plot_waveform
from model import ModelConfig, UNet
tf.compat.v1.disable_eager_execution()
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
def read_args():
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", default=20, type=int, help="batch size")
parser.add_argument("--model_dir", help="Checkpoint directory (default: None)")
parser.add_argument("--data_dir", default="", help="Input file directory")
parser.add_argument("--data_list", default="", help="Input csv file")
parser.add_argument("--hdf5_file", default="", help="Input hdf5 file")
parser.add_argument("--hdf5_group", default="data", help="data group name in hdf5 file")
parser.add_argument("--result_dir", default="results", help="Output directory")
parser.add_argument("--result_fname", default="picks", help="Output file")
parser.add_argument("--min_p_prob", default=0.3, type=float, help="Probability threshold for P pick")
parser.add_argument("--min_s_prob", default=0.3, type=float, help="Probability threshold for S pick")
parser.add_argument("--mpd", default=50, type=float, help="Minimum peak distance")
parser.add_argument("--amplitude", action="store_true", help="if return amplitude value")
parser.add_argument("--format", default="numpy", help="input format")
parser.add_argument("--s3_url", default="localhost:9000", help="s3 url")
parser.add_argument("--stations", default="", help="seismic station info")
parser.add_argument("--plot_figure", action="store_true", help="If plot figure for test")
parser.add_argument("--save_prob", action="store_true", help="If save result for test")
parser.add_argument("--pre_sec", default=1, type=float, help="Window length before pick")
parser.add_argument("--post_sec", default=4, type=float, help="Window length after pick")
parser.add_argument("--highpass_filter", default=0.0, type=float, help="Highpass filter")
parser.add_argument("--response_xml", default=None, type=str, help="response xml file")
parser.add_argument("--sampling_rate", default=100, type=float, help="sampling rate")
args = parser.parse_args()
return args
def pred_fn(args, data_reader, figure_dir=None, prob_dir=None, log_dir=None):
current_time = time.strftime("%y%m%d-%H%M%S")
if log_dir is None:
log_dir = os.path.join(args.log_dir, "pred", current_time)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if (args.plot_figure == True) and (figure_dir is None):
figure_dir = os.path.join(log_dir, "figures")
if not os.path.exists(figure_dir):
os.makedirs(figure_dir)
if (args.save_prob == True) and (prob_dir is None):
prob_dir = os.path.join(log_dir, "probs")
if not os.path.exists(prob_dir):
os.makedirs(prob_dir)
if args.save_prob:
h5 = h5py.File(os.path.join(args.result_dir, "result.h5"), "w", libver="latest")
prob_h5 = h5.create_group("/prob")
logging.info("Pred log: %s" % log_dir)
logging.info("Dataset size: {}".format(data_reader.num_data))
with tf.compat.v1.name_scope("Input_Batch"):
if args.format == "mseed_array":
batch_size = 1
else:
batch_size = args.batch_size
dataset = data_reader.dataset(batch_size)
batch = tf.compat.v1.data.make_one_shot_iterator(dataset).get_next()
config = ModelConfig(X_shape=data_reader.X_shape)
with open(os.path.join(log_dir, "config.log"), "w") as fp:
fp.write("\n".join("%s: %s" % item for item in vars(config).items()))
model = UNet(config=config, input_batch=batch, mode="pred")
# model = UNet(config=config, mode="pred")
sess_config = tf.compat.v1.ConfigProto()
sess_config.gpu_options.allow_growth = True
# sess_config.log_device_placement = False
with tf.compat.v1.Session(config=sess_config) as sess:
saver = tf.compat.v1.train.Saver(tf.compat.v1.global_variables(), max_to_keep=5)
init = tf.compat.v1.global_variables_initializer()
sess.run(init)
latest_check_point = tf.train.latest_checkpoint(args.model_dir)
logging.info(f"restoring model {latest_check_point}")
saver.restore(sess, latest_check_point)
picks = []
amps = [] if args.amplitude else None
if args.plot_figure:
multiprocessing.set_start_method("spawn")
pool = multiprocessing.Pool(multiprocessing.cpu_count())
for _ in tqdm(range(0, data_reader.num_data, batch_size), desc="Pred"):
if args.amplitude:
pred_batch, X_batch, amp_batch, fname_batch, t0_batch, station_batch = sess.run(
[model.preds, batch[0], batch[1], batch[2], batch[3], batch[4]],
feed_dict={model.drop_rate: 0, model.is_training: False},
)
# X_batch, amp_batch, fname_batch, t0_batch = sess.run([batch[0], batch[1], batch[2], batch[3]])
else:
pred_batch, X_batch, fname_batch, t0_batch, station_batch = sess.run(
[model.preds, batch[0], batch[1], batch[2], batch[3]],
feed_dict={model.drop_rate: 0, model.is_training: False},
)
# X_batch, fname_batch, t0_batch = sess.run([model.preds, batch[0], batch[1], batch[2]])
# pred_batch = []
# for i in range(0, len(X_batch), 1):
# pred_batch.append(sess.run(model.preds, feed_dict={model.X: X_batch[i:i+1], model.drop_rate: 0, model.is_training: False}))
# pred_batch = np.vstack(pred_batch)
waveforms = None
if args.amplitude:
waveforms = amp_batch
picks_ = extract_picks(
preds=pred_batch,
file_names=fname_batch,
station_ids=station_batch,
begin_times=t0_batch,
config=args,
waveforms=waveforms,
use_amplitude=args.amplitude,
dt=1.0 / args.sampling_rate,
)
picks.extend(picks_)
## save pick per file
if len(fname_batch) == 1:
df = pd.DataFrame(picks_)
df = df[df["phase_index"] > 10]
if not os.path.exists(os.path.join(args.result_dir, "picks")):
os.makedirs(os.path.join(args.result_dir, "picks"))
df = df[
[
"station_id",
"begin_time",
"phase_index",
"phase_time",
"phase_score",
"phase_type",
"phase_amplitude",
"dt",
]
]
df.to_csv(
os.path.join(
args.result_dir, "picks", fname_batch[0].decode().split("/")[-1].rstrip(".mseed") + ".csv"
),
index=False,
)
if args.plot_figure:
if not (isinstance(fname_batch, np.ndarray) or isinstance(fname_batch, list)):
fname_batch = [fname_batch.decode().rstrip(".mseed") + "_" + x.decode() for x in station_batch]
else:
fname_batch = [x.decode() for x in fname_batch]
pool.starmap(
partial(
plot_waveform,
figure_dir=figure_dir,
),
# zip(X_batch, pred_batch, [x.decode() for x in fname_batch]),
zip(X_batch, pred_batch, fname_batch),
)
if args.save_prob:
# save_prob(pred_batch, fname_batch, prob_dir=prob_dir)
if not (isinstance(fname_batch, np.ndarray) or isinstance(fname_batch, list)):
fname_batch = [fname_batch.decode().rstrip(".mseed") + "_" + x.decode() for x in station_batch]
else:
fname_batch = [x.decode() for x in fname_batch]
save_prob_h5(pred_batch, fname_batch, prob_h5)
if len(picks) > 0:
# save_picks(picks, args.result_dir, amps=amps, fname=args.result_fname+".csv")
# save_picks_json(picks, args.result_dir, dt=data_reader.dt, amps=amps, fname=args.result_fname+".json")
df = pd.DataFrame(picks)
# df["fname"] = df["file_name"]
# df["id"] = df["station_id"]
# df["timestamp"] = df["phase_time"]
# df["prob"] = df["phase_prob"]
# df["type"] = df["phase_type"]
base_columns = [
"station_id",
"begin_time",
"phase_index",
"phase_time",
"phase_score",
"phase_type",
"file_name",
]
if args.amplitude:
base_columns.append("phase_amplitude")
base_columns.append("phase_amp")
df["phase_amp"] = df["phase_amplitude"]
df = df[base_columns]
df.to_csv(os.path.join(args.result_dir, args.result_fname + ".csv"), index=False)
print(
f"Done with {len(df[df['phase_type'] == 'P'])} P-picks and {len(df[df['phase_type'] == 'S'])} S-picks"
)
else:
print(f"Done with 0 P-picks and 0 S-picks")
return 0
def main(args):
logging.basicConfig(format="%(asctime)s %(message)s", level=logging.INFO)
with tf.compat.v1.name_scope("create_inputs"):
if args.format == "mseed_array":
data_reader = DataReader_mseed_array(
data_dir=args.data_dir,
data_list=args.data_list,
stations=args.stations,
amplitude=args.amplitude,
highpass_filter=args.highpass_filter,
)
else:
data_reader = DataReader_pred(
format=args.format,
data_dir=args.data_dir,
data_list=args.data_list,
hdf5_file=args.hdf5_file,
hdf5_group=args.hdf5_group,
amplitude=args.amplitude,
highpass_filter=args.highpass_filter,
response_xml=args.response_xml,
sampling_rate=args.sampling_rate,
)
pred_fn(args, data_reader, log_dir=args.result_dir)
return
if __name__ == "__main__":
args = read_args()
main(args)