lmzjms's picture
Upload 35 files
15ac91d
import numpy as np
import time
import torch
import torch.nn as nn
def move_data_to_device(x, device):
if 'float' in str(x.dtype):
x = torch.Tensor(x)
elif 'int' in str(x.dtype):
x = torch.LongTensor(x)
else:
return x
return x.to(device)
def do_mixup(x, mixup_lambda):
"""Mixup x of even indexes (0, 2, 4, ...) with x of odd indexes
(1, 3, 5, ...).
Args:
x: (batch_size * 2, ...)
mixup_lambda: (batch_size * 2,)
Returns:
out: (batch_size, ...)
"""
out = (x[0 :: 2].transpose(0, -1) * mixup_lambda[0 :: 2] + \
x[1 :: 2].transpose(0, -1) * mixup_lambda[1 :: 2]).transpose(0, -1)
return out
def append_to_dict(dict, key, value):
if key in dict.keys():
dict[key].append(value)
else:
dict[key] = [value]
def forward(model, generator, return_input=False,
return_target=False):
"""Forward data to a model.
Args:
model: object
generator: object
return_input: bool
return_target: bool
Returns:
audio_name: (audios_num,)
clipwise_output: (audios_num, classes_num)
(ifexist) segmentwise_output: (audios_num, segments_num, classes_num)
(ifexist) framewise_output: (audios_num, frames_num, classes_num)
(optional) return_input: (audios_num, segment_samples)
(optional) return_target: (audios_num, classes_num)
"""
output_dict = {}
device = next(model.parameters()).device
time1 = time.time()
# Forward data to a model in mini-batches
for n, batch_data_dict in enumerate(generator):
print(n)
batch_waveform = move_data_to_device(batch_data_dict['waveform'], device)
with torch.no_grad():
model.eval()
batch_output = model(batch_waveform)
append_to_dict(output_dict, 'audio_name', batch_data_dict['audio_name'])
append_to_dict(output_dict, 'clipwise_output',
batch_output['clipwise_output'].data.cpu().numpy())
if 'segmentwise_output' in batch_output.keys():
append_to_dict(output_dict, 'segmentwise_output',
batch_output['segmentwise_output'].data.cpu().numpy())
if 'framewise_output' in batch_output.keys():
append_to_dict(output_dict, 'framewise_output',
batch_output['framewise_output'].data.cpu().numpy())
if return_input:
append_to_dict(output_dict, 'waveform', batch_data_dict['waveform'])
if return_target:
if 'target' in batch_data_dict.keys():
append_to_dict(output_dict, 'target', batch_data_dict['target'])
if n % 10 == 0:
print(' --- Inference time: {:.3f} s / 10 iterations ---'.format(
time.time() - time1))
time1 = time.time()
for key in output_dict.keys():
output_dict[key] = np.concatenate(output_dict[key], axis=0)
return output_dict
def interpolate(x, ratio):
"""Interpolate data in time domain. This is used to compensate the
resolution reduction in downsampling of a CNN.
Args:
x: (batch_size, time_steps, classes_num)
ratio: int, ratio to interpolate
Returns:
upsampled: (batch_size, time_steps * ratio, classes_num)
"""
(batch_size, time_steps, classes_num) = x.shape
upsampled = x[:, :, None, :].repeat(1, 1, ratio, 1)
upsampled = upsampled.reshape(batch_size, time_steps * ratio, classes_num)
return upsampled
def pad_framewise_output(framewise_output, frames_num):
"""Pad framewise_output to the same length as input frames. The pad value
is the same as the value of the last frame.
Args:
framewise_output: (batch_size, frames_num, classes_num)
frames_num: int, number of frames to pad
Outputs:
output: (batch_size, frames_num, classes_num)
"""
pad = framewise_output[:, -1 :, :].repeat(1, frames_num - framewise_output.shape[1], 1)
"""tensor for padding"""
output = torch.cat((framewise_output, pad), dim=1)
"""(batch_size, frames_num, classes_num)"""
return output
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def count_flops(model, audio_length):
"""Count flops. Code modified from others' implementation.
"""
multiply_adds = True
list_conv2d=[]
def conv2d_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
kernel_ops = self.kernel_size[0] * self.kernel_size[1] * (self.in_channels / self.groups) * (2 if multiply_adds else 1)
bias_ops = 1 if self.bias is not None else 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_height * output_width
list_conv2d.append(flops)
list_conv1d=[]
def conv1d_hook(self, input, output):
batch_size, input_channels, input_length = input[0].size()
output_channels, output_length = output[0].size()
kernel_ops = self.kernel_size[0] * (self.in_channels / self.groups) * (2 if multiply_adds else 1)
bias_ops = 1 if self.bias is not None else 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_length
list_conv1d.append(flops)
list_linear=[]
def linear_hook(self, input, output):
batch_size = input[0].size(0) if input[0].dim() == 2 else 1
weight_ops = self.weight.nelement() * (2 if multiply_adds else 1)
bias_ops = self.bias.nelement()
flops = batch_size * (weight_ops + bias_ops)
list_linear.append(flops)
list_bn=[]
def bn_hook(self, input, output):
list_bn.append(input[0].nelement() * 2)
list_relu=[]
def relu_hook(self, input, output):
list_relu.append(input[0].nelement() * 2)
list_pooling2d=[]
def pooling2d_hook(self, input, output):
batch_size, input_channels, input_height, input_width = input[0].size()
output_channels, output_height, output_width = output[0].size()
kernel_ops = self.kernel_size * self.kernel_size
bias_ops = 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_height * output_width
list_pooling2d.append(flops)
list_pooling1d=[]
def pooling1d_hook(self, input, output):
batch_size, input_channels, input_length = input[0].size()
output_channels, output_length = output[0].size()
kernel_ops = self.kernel_size[0]
bias_ops = 0
params = output_channels * (kernel_ops + bias_ops)
flops = batch_size * params * output_length
list_pooling2d.append(flops)
def foo(net):
childrens = list(net.children())
if not childrens:
if isinstance(net, nn.Conv2d):
net.register_forward_hook(conv2d_hook)
elif isinstance(net, nn.Conv1d):
net.register_forward_hook(conv1d_hook)
elif isinstance(net, nn.Linear):
net.register_forward_hook(linear_hook)
elif isinstance(net, nn.BatchNorm2d) or isinstance(net, nn.BatchNorm1d):
net.register_forward_hook(bn_hook)
elif isinstance(net, nn.ReLU):
net.register_forward_hook(relu_hook)
elif isinstance(net, nn.AvgPool2d) or isinstance(net, nn.MaxPool2d):
net.register_forward_hook(pooling2d_hook)
elif isinstance(net, nn.AvgPool1d) or isinstance(net, nn.MaxPool1d):
net.register_forward_hook(pooling1d_hook)
else:
print('Warning: flop of module {} is not counted!'.format(net))
return
for c in childrens:
foo(c)
# Register hook
foo(model)
device = device = next(model.parameters()).device
input = torch.rand(1, audio_length).to(device)
out = model(input)
total_flops = sum(list_conv2d) + sum(list_conv1d) + sum(list_linear) + \
sum(list_bn) + sum(list_relu) + sum(list_pooling2d) + sum(list_pooling1d)
return total_flops