AudioLCM / ldm /modules /discriminator /multi_window_disc.py
liuhuadai's picture
Upload 340 files
6efc863 verified
raw
history blame
7.97 kB
import numpy as np
import torch
import torch.nn as nn
class Discriminator2DFactory(nn.Module):
def __init__(self, time_length, freq_length=80, kernel=(3, 3), c_in=1, hidden_size=128,
norm_type='bn', reduction='sum'):# if reduction = 'sum', return shape (B,1),else reduction shape(B,T)
super(Discriminator2DFactory, self).__init__()
padding = (kernel[0] // 2, kernel[1] // 2)
def discriminator_block(in_filters, out_filters, first=False):
"""
Input: (B, in, 2H, 2W)
Output:(B, out, H, W)
"""
conv = nn.Conv2d(in_filters, out_filters, kernel, (2, 2), padding)
if norm_type == 'sn':
conv = nn.utils.spectral_norm(conv)
block = [
conv, # padding = kernel//2
nn.LeakyReLU(0.2, inplace=True),
nn.Dropout2d(0.25)
]
if norm_type == 'bn' and not first:
block.append(nn.BatchNorm2d(out_filters, 0.8))
if norm_type == 'in' and not first:
block.append(nn.InstanceNorm2d(out_filters, affine=True))
block = nn.Sequential(*block)
return block
self.model = nn.ModuleList([
discriminator_block(c_in, hidden_size, first=True),
discriminator_block(hidden_size, hidden_size),
discriminator_block(hidden_size, hidden_size),
])
self.reduction = reduction
ds_size = (time_length // 2 ** 3, (freq_length + 7) // 2 ** 3)
if reduction != 'none':
# The height and width of downsampled image
self.adv_layer = nn.Linear(hidden_size * ds_size[0] * ds_size[1], 1)
else:
self.adv_layer = nn.Linear(hidden_size * ds_size[1], 1)
def forward(self, x):
"""
:param x: [B, C, T, n_bins]
:return: validity: [B, 1], h: List of hiddens
"""
h = []
for l in self.model:
x = l(x)
h.append(x)
if self.reduction != 'none':
x = x.view(x.shape[0], -1)
validity = self.adv_layer(x) # [B, 1]
else:
B, _, T_, _ = x.shape
x = x.transpose(1, 2).reshape(B, T_, -1)
validity = self.adv_layer(x)[:, :, 0] # [B, T]
return validity, h
class MultiWindowDiscriminator(nn.Module):
def __init__(self, time_lengths, cond_size=0, freq_length=80, kernel=(3, 3),
c_in=1, hidden_size=128, norm_type='bn', reduction='sum'):
super(MultiWindowDiscriminator, self).__init__()
self.win_lengths = time_lengths
self.reduction = reduction
self.conv_layers = nn.ModuleList()
if cond_size > 0:
self.cond_proj_layers = nn.ModuleList()
self.mel_proj_layers = nn.ModuleList()
for time_length in time_lengths:
conv_layer = [
Discriminator2DFactory(
time_length, freq_length, kernel, c_in=c_in, hidden_size=hidden_size,
norm_type=norm_type, reduction=reduction)
]
self.conv_layers += conv_layer
if cond_size > 0:
self.cond_proj_layers.append(nn.Linear(cond_size, freq_length))
self.mel_proj_layers.append(nn.Linear(freq_length, freq_length))
def forward(self, x, x_len, cond=None, start_frames_wins=None):
'''
Args:
x (tensor): input mel, (B, c_in, T, n_bins).
x_length (tensor): len of per mel. (B,).
Returns:
tensor : (B).
'''
validity = []
if start_frames_wins is None:
start_frames_wins = [None] * len(self.conv_layers)
h = []
for i, start_frames in zip(range(len(self.conv_layers)), start_frames_wins):
x_clip, c_clip, start_frames = self.clip(
x, cond, x_len, self.win_lengths[i], start_frames) # x_clip:(B, 1, win_length, C)
start_frames_wins[i] = start_frames
if x_clip is None:
continue
if cond is not None:
x_clip = self.mel_proj_layers[i](x_clip) # (B, 1, win_length, C)
c_clip = self.cond_proj_layers[i](c_clip)[:, None] # (B, 1, win_length, C)
x_clip = x_clip + c_clip
x_clip, h_ = self.conv_layers[i](x_clip)
h += h_
validity.append(x_clip)
if len(validity) != len(self.conv_layers):
return None, start_frames_wins, h
if self.reduction == 'sum':
validity = sum(validity) # [B]
elif self.reduction == 'stack':
validity = torch.stack(validity, -1) # [B, W_L]
elif self.reduction == 'none':
validity = torch.cat(validity, -1) # [B, W_sum]
return validity, start_frames_wins, h
def clip(self, x, cond, x_len, win_length, start_frames=None):
'''Ramdom clip x to win_length.
Args:
x (tensor) : (B, c_in, T, n_bins).
cond (tensor) : (B, T, H).
x_len (tensor) : (B,).
win_length (int): target clip length
Returns:
(tensor) : (B, c_in, win_length, n_bins).
'''
T_start = 0
T_end = x_len.max() - win_length # if x_len < win_length. None will be returned
if T_end < 0:
return None, None, start_frames
T_end = T_end.item()
if start_frames is None:
start_frame = np.random.randint(low=T_start, high=T_end + 1)
start_frames = [start_frame] * x.size(0)
else:
start_frame = start_frames[0]
x_batch = x[:, :, start_frame: start_frame + win_length]
c_batch = cond[:, start_frame: start_frame + win_length] if cond is not None else None
return x_batch, c_batch, start_frames
class Discriminator(nn.Module):
def __init__(self, time_lengths=[32, 64, 128], freq_length=80, cond_size=0, kernel=(3, 3), c_in=1,
hidden_size=128, norm_type='bn', reduction='sum', uncond_disc=True):
super(Discriminator, self).__init__()
self.time_lengths = time_lengths
self.cond_size = cond_size
self.reduction = reduction
self.uncond_disc = uncond_disc
if uncond_disc:
self.discriminator = MultiWindowDiscriminator(
freq_length=freq_length,
time_lengths=time_lengths,
kernel=kernel,
c_in=c_in, hidden_size=hidden_size, norm_type=norm_type,
reduction=reduction
)
if cond_size > 0:
self.cond_disc = MultiWindowDiscriminator(
freq_length=freq_length,
time_lengths=time_lengths,
cond_size=cond_size,
kernel=kernel,
c_in=c_in, hidden_size=hidden_size, norm_type=norm_type,
reduction=reduction
)
def forward(self, x, cond=None,x_len=None, start_frames_wins=None):
"""
:param x: [B, T, 80]
:param cond: [B, T, cond_size]
:param return_y_only:
:return:
"""
if len(x.shape) == 3:
x = x[:, None, :, :]
if x_len == None:
# print("注意这里x_len的统计方式有问题这里假设padvalue是0,此外reconstruction注意传入之前就要处理好mask")
x_len = x.sum([1, -1]).ne(0).int().sum([-1]) # shape(B,)
ret = {'y_c': None, 'y': None}
if self.uncond_disc:
ret['y'], start_frames_wins, ret['h'] = self.discriminator(
x, x_len, start_frames_wins=start_frames_wins)
if self.cond_size > 0 and cond is not None:
ret['y_c'], start_frames_wins, ret['h_c'] = self.cond_disc(
x, x_len, cond, start_frames_wins=start_frames_wins)
ret['start_frames_wins'] = start_frames_wins
return ret