SEED-LLaMA / models /seed_qformer /qformer_quantizer.py
sjzhao's picture
update demo
bd63939
"""
Copyright (c) 2023, salesforce.com, inc.
All rights reserved.
SPDX-License-Identifier: BSD-3-Clause
For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause
"""
import logging
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.cuda.amp import autocast as autocast
from torch.nn import functional as F
import numpy as np
from functools import partial
from einops import rearrange
from .blip2 import Blip2Base, disabled_train
from .vit import Block
from .utils import download_cached_file, is_url
class VectorQuantizer2(nn.Module):
"""
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
"""
# NOTE: due to a bug the beta term was applied to the wrong term. for
# backwards compatibility we use the buggy version by default, but you can
# specify legacy=False to fix it.
def __init__(self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True):
super().__init__()
self.n_e = n_e
self.e_dim = e_dim
self.beta = beta
self.legacy = legacy
self.embedding = nn.Embedding(self.n_e, self.e_dim)
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
self.remap = remap
if self.remap is not None:
self.register_buffer("used", torch.tensor(np.load(self.remap)))
self.re_embed = self.used.shape[0]
self.unknown_index = unknown_index # "random" or "extra" or integer
if self.unknown_index == "extra":
self.unknown_index = self.re_embed
self.re_embed = self.re_embed + 1
print(f"Remapping {self.n_e} indices to {self.re_embed} indices. "
f"Using {self.unknown_index} for unknown indices.")
else:
self.re_embed = n_e
self.sane_index_shape = sane_index_shape
def remap_to_used(self, inds):
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape(ishape[0], -1)
used = self.used.to(inds)
match = (inds[:, :, None] == used[None, None, ...]).long()
new = match.argmax(-1)
unknown = match.sum(2) < 1
if self.unknown_index == "random":
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(device=new.device)
else:
new[unknown] = self.unknown_index
return new.reshape(ishape)
def unmap_to_all(self, inds):
ishape = inds.shape
assert len(ishape) > 1
inds = inds.reshape(ishape[0], -1)
used = self.used.to(inds)
if self.re_embed > self.used.shape[0]: # extra token
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
return back.reshape(ishape)
# def l2norm(self, t):
# return F.normalize(t, p = 2, dim = -1)
def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
assert rescale_logits is False, "Only for interface compatible with Gumbel"
assert return_logits is False, "Only for interface compatible with Gumbel"
# reshape z -> (batch, height, width, channel) and flatten
#z = rearrange(z, 'b c h w -> b h w c').contiguous()
bz = z.shape[0]
z_flattened = z.view(-1, self.e_dim)
#print('z_flattened', z_flattened.shape)
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
d = torch.sum(z_flattened ** 2, dim=1, keepdim=True) + \
torch.sum(self.embedding.weight**2, dim=1) - 2 * \
torch.einsum('bd,dn->bn', z_flattened, rearrange(self.embedding.weight, 'n d -> d n'))
min_encoding_indices = torch.argmin(d, dim=1)
z_q = self.embedding(min_encoding_indices).view(z.shape)
perplexity = None
min_encodings = None
# compute loss for embedding
if not self.legacy:
loss = self.beta * torch.mean((z_q.detach() - z)**2) + torch.mean((z_q - z.detach())**2)
else:
loss = torch.mean((z_q.detach() - z)**2) + self.beta * torch.mean((z_q - z.detach())**2)
# preserve gradients
z_q = z + (z_q - z).detach()
# reshape back to match original input shape
#z_q = rearrange(z_q, 'b h w c -> b c h w').contiguous()
z_q = z_q.reshape(bz, -1, z_q.shape[-1])
if self.remap is not None:
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
min_encoding_indices = self.remap_to_used(min_encoding_indices)
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
if self.sane_index_shape:
min_encoding_indices = min_encoding_indices.reshape(z_q.shape[0], z_q.shape[2], z_q.shape[3])
return z_q, loss, min_encoding_indices
def get_codebook_entry(self, indices, shape=None):
# shape specifying (batch, height, width, channel)
if self.remap is not None:
indices = indices.reshape(shape[0], -1) # add batch axis
indices = self.unmap_to_all(indices)
indices = indices.reshape(-1) # flatten again
# get quantized latent vectors
z_q = self.embedding(indices)
if shape is not None:
z_q = z_q.view(shape)
# reshape back to match original input shape
z_q = z_q.permute(0, 3, 1, 2).contiguous()
return z_q
class Blip2QformerQuantizer(Blip2Base):
"""
BLIP2 first-stage model with Q-former and ViT.
Supported model types:
- pretrained: pretrained model with vit-g
- pretrain_vitL: pretrained model with vit-large
- coco: fintuned model on coco
Usage:
>>> from lavis.models import load_model
>>> model = load_model("blip2", "pretrain")
"""
PRETRAINED_MODEL_CONFIG_DICT = {
"pretrain": "configs/models/blip2/blip2_pretrain.yaml",
"pretrain_vitL": "configs/models/blip2/blip2_pretrain_vitL.yaml",
"coco": "configs/models/blip2/blip2_coco.yaml",
}
def __init__(self,
vit_model="eva_clip_g",
img_size=224,
drop_path_rate=0,
use_grad_checkpoint=False,
vit_precision="fp16",
freeze_vit=True,
num_query_token=32,
cross_attention_freq=2,
embed_dim=256,
max_txt_len=32,
codebook_embed_dim=32,
n_embed=8192,
recon_s=True,
blocks_for_image=True,
decode_depth=4,
use_recon_s_for_image=False,
use_qformer_image=False,
image_features_dim=1024):
super().__init__()
self.tokenizer = self.init_tokenizer()
self.visual_encoder, self.ln_vision = self.init_vision_encoder(vit_model, img_size, drop_path_rate, use_grad_checkpoint,
vit_precision)
if freeze_vit:
for name, param in self.visual_encoder.named_parameters():
param.requires_grad = False
self.visual_encoder = self.visual_encoder.eval()
self.visual_encoder.train = disabled_train
logging.info("freeze vision encoder")
self.ln_vision.weight.requires_grad = False
self.ln_vision.bias.requires_grad = False
self.codebook_embed_dim = codebook_embed_dim
self.n_embed = n_embed
self.recon_s = recon_s
self.blocks_for_image = blocks_for_image
self.use_recon_s_for_image = use_recon_s_for_image
self.depth = decode_depth
self.image_features_dim = image_features_dim
self.use_qformer_image = use_qformer_image
self.Qformer, self.query_tokens = self.init_Qformer(num_query_token, self.visual_encoder.num_features)
self.Qformer.cls = None
self.Qformer.bert.embeddings.word_embeddings = None
self.Qformer.bert.embeddings.position_embeddings = None
for layer in self.Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
for name, param in self.Qformer.named_parameters():
param.requires_grad = False
self.query_tokens.requires_grad = False
self.quantize = VectorQuantizer2(n_embed, codebook_embed_dim, beta=0.25, remap=None, sane_index_shape=False)
self.encode_task_layer = nn.Sequential(
nn.Linear(self.Qformer.config.hidden_size, self.Qformer.config.hidden_size),
nn.Tanh(),
nn.Linear(self.Qformer.config.hidden_size, codebook_embed_dim) # for quantize
)
self.decode_task_layer = nn.Sequential(
nn.Linear(codebook_embed_dim, codebook_embed_dim),
nn.Tanh(),
nn.Linear(codebook_embed_dim, self.Qformer.config.hidden_size) # for quantize
)
self.quantize = self.quantize.eval()
self.quantize.training = False
for name, param in self.named_parameters():
if 'quantize' in name or 'encode_task_layer' in name or 'decode_task_layer' in name:
#print('freeze params', name)
param.requires_grad = False
if self.recon_s:
self.pos_embed = nn.Parameter(torch.zeros(1, num_query_token, self.Qformer.config.hidden_size))
self.blocks = nn.ModuleList([
Block(dim=self.Qformer.config.hidden_size,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
norm_layer=partial(nn.LayerNorm, eps=1e-6)) for i in range(self.depth)
])
if self.blocks_for_image:
self.pos_embed_image = nn.Parameter(torch.zeros(1, num_query_token, self.Qformer.config.hidden_size))
self.blocks_image = nn.ModuleList([
Block(dim=self.Qformer.config.hidden_size,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
norm_layer=partial(nn.LayerNorm, eps=1e-6)) for i in range(self.depth)
])
if self.use_qformer_image:
num_reverse_token = 1
self.Reverse_Qformer, self.reverse_tokens = self.init_Qformer(num_reverse_token, self.Qformer.config.hidden_size)
self.Reverse_Qformer.cls = None
self.Reverse_Qformer.bert.embeddings.word_embeddings = None
self.Reverse_Qformer.bert.embeddings.position_embeddings = None
for layer in self.Reverse_Qformer.bert.encoder.layer:
layer.output = None
layer.intermediate = None
self.distill_image_proj = nn.Linear(self.Qformer.config.hidden_size, image_features_dim)
else:
self.image_down = nn.Sequential(
nn.Linear(self.Qformer.config.hidden_size, 256, bias=False),
nn.ReLU(),
nn.Linear(256, 128, bias=False),
nn.ReLU(),
nn.Linear(128, 32, bias=False),
)
self.distill_image_proj = nn.Linear(num_query_token * 32, image_features_dim)
def get_codebook_indices(self, image):
with torch.no_grad():
with self.maybe_autocast():
image_embeds = self.ln_vision(self.visual_encoder(image))
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(image.device)
query_tokens = self.query_tokens.expand(image_embeds.shape[0], -1, -1)
query_output = self.Qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
query_output_down = self.encode_task_layer(query_output.last_hidden_state)
quant, loss_embed, embed_ind = self.quantize(query_output_down)
embed_ind = embed_ind.reshape(quant.shape[0], -1)
query_output_up = self.decode_task_layer(quant)
return embed_ind, query_output_up
def get_codebook_entry(self, indices):
quant_embedding = self.quantize.get_codebook_entry(indices)
# print('quant_embedding_shape: ', quant_embedding.shape)
# print(self.decode_task_layer)
# exit()
query_output_up = self.decode_task_layer(quant_embedding)
pos_embed_image = self.pos_embed_image.repeat(query_output_up.shape[0], 1, 1)
query_output_up_pos_image = query_output_up + pos_embed_image
for blk in self.blocks_image:
query_output_up_pos_image = blk(query_output_up_pos_image)
query_output_up = query_output_up_pos_image
if self.use_qformer_image:
query_atts = torch.ones(query_output_up.size()[:-1], dtype=torch.long).to(query_output_up.device)
reverse_tokens = self.reverse_tokens.expand(query_output_up.shape[0], -1, -1)
reverse_output = self.Reverse_Qformer.bert(
query_embeds=reverse_tokens,
encoder_hidden_states=query_output_up,
encoder_attention_mask=query_atts,
return_dict=True,
)
reverse_output = reverse_output.last_hidden_state
reverse_output_proj = self.distill_image_proj(reverse_output).squeeze(1)
else:
reverse_output = self.image_down(query_output_up)
reverse_output = reverse_output.reshape(reverse_output.shape[0], -1)
reverse_output_proj = self.distill_image_proj(reverse_output)
return reverse_output_proj
@classmethod
def from_pretrained(cls, pretrained_model_path, **kwargs):
vit_model = kwargs.get("vit_model", "eva_clip_g")
img_size = kwargs.get("image_size", 224)
num_query_token = kwargs.get("num_query_token", 32)
cross_attention_freq = kwargs.get("cross_attention_freq", 2)
drop_path_rate = kwargs.get("drop_path_rate", 0)
use_grad_checkpoint = kwargs.get("use_grad_checkpoint", False)
vit_precision = kwargs.get("vit_precision", "fp16")
freeze_vit = kwargs.get("freeze_vit", True)
max_txt_len = kwargs.get("max_txt_len", 32)
model = cls(
vit_model=vit_model,
img_size=img_size,
drop_path_rate=drop_path_rate,
use_grad_checkpoint=use_grad_checkpoint,
vit_precision=vit_precision,
freeze_vit=freeze_vit,
num_query_token=num_query_token,
cross_attention_freq=cross_attention_freq,
max_txt_len=max_txt_len,
)
if pretrained_model_path.startswith('http'):
print('start download seed model...')
cached_file = download_cached_file(pretrained_model_path, check_hash=False, progress=True)
print(cached_file)
ckpt = torch.load(cached_file, map_location="cpu")
else:
ckpt = torch.load(pretrained_model_path, map_location="cpu")
missing, unexcepted = model.load_state_dict(ckpt, strict=False)
print('missing keys: ', len(missing), 'unexpected keys:', len(unexcepted))
return model