Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from PIL import Image | |
from diffusers import AutoPipelineForText2Image, DDIMScheduler | |
from transformers import CLIPVisionModelWithProjection | |
import numpy as np | |
import spaces # Ensure this is available in your environment | |
# Initialize a zero tensor for demonstration purposes | |
zero = torch.Tensor([0]).cuda() | |
print(zero.device) # Should output 'cuda:0' if a GPU is available | |
# Decorate the function to run on GPU | |
def transform_image(face_image): | |
print(zero.device) # Check the device inside the function, should be 'cuda:0' | |
generator = torch.Generator(device="cuda").manual_seed(0) # Use GPU device if available | |
# Process the input face image | |
if isinstance(face_image, Image.Image): | |
processed_face_image = face_image | |
elif isinstance(face_image, np.ndarray): | |
processed_face_image = Image.fromarray(face_image) | |
else: | |
raise ValueError("Unsupported image format") | |
# Load the style image from the local path | |
style_image_path = "/content/soyjak2.jpeg" | |
style_image = Image.open(style_image_path) | |
# Perform the transformation using the GPU | |
image = pipeline( | |
prompt="soyjak", | |
ip_adapter_image=[style_image, processed_face_image], | |
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality", | |
num_inference_steps=30, | |
generator=generator, | |
).images[0] | |
return image | |
# Load models and configure pipeline with GPU support | |
pipeline = AutoPipelineForText2Image.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
torch_dtype=torch.float16, # Consider using torch.float32 for GPU computations | |
device="cuda", # Use GPU device if available | |
).to("cuda") # Ensure the model is moved to GPU | |
# Additional pipeline configurations | |
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config).to("cuda") | |
pipeline.enable_model_cpu_offload(False) # Consider not offloading to CPU when using GPU | |
# Gradio interface setup | |
demo = gr.Interface( | |
fn=transform_image, | |
inputs=gr.Image(label="Upload your face image"), | |
outputs=gr.Image(label="Your Soyjak"), | |
title="InstaSoyjak - turn anyone into a Soyjak", | |
description="All you need to do is upload an image. Please use responsibly. Please follow me on Twitter if you like this space: https://twitter.com/angrypenguinPNG. Idea from Yacine, please give him a follow: https://twitter.com/yacineMTB.", | |
) | |
demo.launch() | |