Spaces:
Sleeping
Sleeping
import requests
import json
# Build model mapping
original_models = [
# OpenAI Models
"gpt-3.5-turbo",
"gpt-3.5-turbo-202201",
"gpt-4o",
"gpt-4o-2024-05-13",
"o1-preview",
# Claude Models
"claude",
"claude-3-5-sonnet",
"claude-sonnet-3.5",
"claude-3-5-sonnet-20240620",
# Meta/LLaMA Models
"@cf/meta/llama-2-7b-chat-fp16",
"@cf/meta/llama-2-7b-chat-int8",
"@cf/meta/llama-3-8b-instruct",
"@cf/meta/llama-3.1-8b-instruct",
"@cf/meta-llama/llama-2-7b-chat-hf-lora",
"llama-3.1-405b",
"llama-3.1-70b",
"llama-3.1-8b",
"meta-llama/Llama-2-7b-chat-hf",
"meta-llama/Llama-3.1-70B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"meta-llama/Llama-3.2-11B-Vision-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.2-90B-Vision-Instruct",
"meta-llama/Llama-Guard-3-8B",
"meta-llama/Meta-Llama-3-70B-Instruct",
"meta-llama/Meta-Llama-3-8B-Instruct",
"meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
"meta-llama/Meta-Llama-3.1-8B-Instruct",
"meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
# Mistral Models
"mistral",
"mistral-large",
"@cf/mistral/mistral-7b-instruct-v0.1",
"@cf/mistral/mistral-7b-instruct-v0.2-lora",
"@hf/mistralai/mistral-7b-instruct-v0.2",
"mistralai/Mistral-7B-Instruct-v0.2",
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mixtral-8x22B-Instruct-v0.1",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
# Qwen Models
"@cf/qwen/qwen1.5-0.5b-chat",
"@cf/qwen/qwen1.5-1.8b-chat",
"@cf/qwen/qwen1.5-7b-chat-awq",
"@cf/qwen/qwen1.5-14b-chat-awq",
"Qwen/Qwen2.5-3B-Instruct",
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/Qwen2.5-Coder-32B-Instruct",
# Google/Gemini Models
"@cf/google/gemma-2b-it-lora",
"@cf/google/gemma-7b-it-lora",
"@hf/google/gemma-7b-it",
"google/gemma-1.1-2b-it",
"google/gemma-1.1-7b-it",
"gemini-pro",
"gemini-1.5-pro",
"gemini-1.5-pro-latest",
"gemini-1.5-flash",
# Cohere Models
"c4ai-aya-23-35b",
"c4ai-aya-23-8b",
"command",
"command-light",
"command-light-nightly",
"command-nightly",
"command-r",
"command-r-08-2024",
"command-r-plus",
"command-r-plus-08-2024",
"rerank-english-v2.0",
"rerank-english-v3.0",
"rerank-multilingual-v2.0",
"rerank-multilingual-v3.0",
# Microsoft Models
"@cf/microsoft/phi-2",
"microsoft/DialoGPT-medium",
"microsoft/Phi-3-medium-4k-instruct",
"microsoft/Phi-3-mini-4k-instruct",
"microsoft/Phi-3.5-mini-instruct",
"microsoft/WizardLM-2-8x22B",
# Yi Models
"01-ai/Yi-1.5-34B-Chat",
"01-ai/Yi-34B-Chat",
]
# Create mapping from simplified model names to original model names
model_mapping = {}
simplified_models = []
for original_model in original_models:
simplified_name = original_model.split('/')[-1]
if simplified_name in model_mapping:
# Conflict detected, handle as per instructions
print(f"Conflict detected for model name '{simplified_name}'. Excluding '{original_model}' from available models.")
continue
model_mapping[simplified_name] = original_model
simplified_models.append(simplified_name)
def generate(
model,
messages,
temperature=0.7,
top_p=1.0,
n=1,
stream=False,
stop=None,
max_tokens=None,
presence_penalty=0.0,
frequency_penalty=0.0,
logit_bias=None,
user=None,
timeout=30,
):
"""
Generates a chat completion using the provided model and messages.
"""
# Use the simplified model names
models = simplified_models
if model not in models:
raise ValueError(f"Invalid model: {model}. Choose from: {', '.join(models)}")
# Map simplified model name to original model name
original_model = model_mapping[model]
api_endpoint = "https://chat.typegpt.net/api/openai/v1/chat/completions"
headers = {
"authority": "chat.typegpt.net",
"accept": "application/json, text/event-stream",
"accept-language": "en-US,en;q=0.9",
"content-type": "application/json",
"origin": "https://chat.typegpt.net",
"referer": "https://chat.typegpt.net/",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36"
}
# Payload
payload = {
"messages": messages,
"stream": stream,
"model": original_model,
"temperature": temperature,
"presence_penalty": presence_penalty,
"frequency_penalty": frequency_penalty,
"top_p": top_p,
}
# Only include max_tokens if it's not None
if max_tokens is not None:
payload["max_tokens"] = max_tokens
# Only include 'stop' if it's not None
if stop is not None:
payload["stop"] = stop
# Check if logit_bias is provided
if logit_bias is not None:
payload["logit_bias"] = logit_bias
# Include 'user' if provided
if user is not None:
payload["user"] = user
# Start the request
session = requests.Session()
response = session.post(
api_endpoint, headers=headers, json=payload, stream=stream, timeout=timeout
)
if not response.ok:
raise Exception(f"Failed to generate response - ({response.status_code}, {response.reason}) - {response.text}")
def stream_response():
for line in response.iter_lines():
if line:
line = line.decode("utf-8")
if line.startswith("data: "):
line = line[6:] # Remove "data: " prefix
if line.strip() == "[DONE]":
break
try:
data = json.loads(line)
yield data
except json.JSONDecodeError:
continue
if stream:
return stream_response()
else:
return response.json()
if __name__ == "__main__":
# Example usage
# model = "claude-3-5-sonnet-20240620"
# model = "qwen1.5-0.5b-chat"
# model = "llama-2-7b-chat-fp16"
model = "gpt-3.5-turbo"
messages = [
{"role": "system", "content": "Be Detailed"},
{"role": "user", "content": "What is the knowledge cut off? Be specific and also specify the month, year and date. If not sure, then provide approximate."}
]
# try:
# # For non-streamed response
# response = generate(
# model=model,
# messages=messages,
# temperature=0.5,
# max_tokens=4000,
# stream=False # Change to True for streaming
# )
# if 'choices' in response:
# reply = response['choices'][0]['message']['content']
# print(reply)
# else:
# print("No response received.")
# except Exception as e:
# print(e)
try:
# For streamed response
response = generate(
model=model,
messages=messages,
temperature=0.5,
max_tokens=4000,
stream=True, # Change to False for non-streamed response
)
for data in response:
if 'choices' in data:
reply = data['choices'][0]['delta']['content']
print(reply, end="", flush=True)
else:
print("No response received.")
except Exception as e:
print(e)
from fastapi import FastAPI, Request, Response
from fastapi.responses import JSONResponse, StreamingResponse
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
import asyncio
import json
import requests
from TYPEGPT.typegpt_api import generate, model_mapping, simplified_models
from api_info import developer_info
app = FastAPI()
# Set up CORS middleware if needed
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/health_check")
async def health_check():
return {"status": "OK"}
@app.get("/models")
async def get_models():
# Retrieve models from TypeGPT API and forward the response
api_endpoint = "https://chat.typegpt.net/api/openai/v1/models"
try:
response = requests.get(api_endpoint)
# return response.text
return JSONResponse(content=response.json(), status_code=response.status_code)
except Exception as e:
return JSONResponse(content={"error": str(e)}, status_code=500)
@app.post("/chat/completions")
async def chat_completions(request: Request):
# Receive the JSON payload
try:
body = await request.json()
except Exception as e:
return JSONResponse(content={"error": "Invalid JSON payload"}, status_code=400)
# Extract parameters
model = body.get("model")
messages = body.get("messages")
temperature = body.get("temperature", 0.7)
top_p = body.get("top_p", 1.0)
n = body.get("n", 1)
stream = body.get("stream", False)
stop = body.get("stop")
max_tokens = body.get("max_tokens")
presence_penalty = body.get("presence_penalty", 0.0)
frequency_penalty = body.get("frequency_penalty", 0.0)
logit_bias = body.get("logit_bias")
user = body.get("user")
timeout = 30 # or set based on your preference
# Validate required parameters
if not model:
return JSONResponse(content={"error": "The 'model' parameter is required."}, status_code=400)
if not messages:
return JSONResponse(content={"error": "The 'messages' parameter is required."}, status_code=400)
# Call the generate function
try:
if stream:
async def generate_stream():
response = generate(
model=model,
messages=messages,
temperature=temperature,
top_p=top_p,
n=n,
stream=True,
stop=stop,
max_tokens=max_tokens,
presence_penalty=presence_penalty,
frequency_penalty=frequency_penalty,
logit_bias=logit_bias,
user=user,
timeout=timeout,
)
for chunk in response:
yield f"data: {json.dumps(chunk)}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(
generate_stream(),
media_type="text/event-stream",
headers={
"Cache-Control": "no-cache",
"Connection": "keep-alive",
"Transfer-Encoding": "chunked"
}
)
else:
response = generate(
model=model,
messages=messages,
temperature=temperature,
top_p=top_p,
n=n,
stream=False,
stop=stop,
max_tokens=max_tokens,
presence_penalty=presence_penalty,
frequency_penalty=frequency_penalty,
logit_bias=logit_bias,
user=user,
timeout=timeout,
)
return JSONResponse(content=response)
except Exception as e:
return JSONResponse(content={"error": str(e)}, status_code=500)
@app.get("/developer_info")
async def get_developer_info():
return JSONResponse(content=developer_info)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)