Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load NVLM-D-72B model and tokenizer | |
# model_name = "nvidia/NVLM-D-72B" | |
model_name = "nvidia/NVLM-D-7B" | |
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
trust_remote_code=True, | |
device_map="auto" | |
) | |
# Inference function | |
def generate_response(prompt, max_tokens=50): | |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") # Adjust to "cpu" if GPU unavailable | |
outputs = model.generate(**inputs, max_new_tokens=max_tokens) | |
return tokenizer.decode(outputs[0]) | |
# Gradio interface | |
interface = gr.Interface( | |
fn=generate_response, | |
inputs=[ | |
gr.Textbox(lines=2, label="Enter your prompt"), | |
gr.Slider(10, 100, step=10, value=50, label="Max Tokens") | |
], | |
outputs="text", | |
title="NVIDIA NVLM-D-72B Demo", | |
description="Generate text using NVIDIA's NVLM-D-72B model." | |
) | |
if __name__ == "__main__": | |
interface.launch() | |
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |