File size: 8,027 Bytes
d083399 f7f0543 d083399 f7f0543 d083399 1fc87db d083399 90b9490 d083399 90b9490 d083399 00e4d1f d083399 0e46c31 d083399 4474065 d083399 4474065 d083399 f7f0543 d083399 f7f0543 d083399 f7f0543 d083399 90b9490 d083399 90b9490 d083399 90b9490 d083399 90b9490 d083399 00e4d1f d083399 0e46c31 d083399 90b9490 4474065 90b9490 4474065 d083399 e16015d d083399 90b9490 e16015d d083399 90b9490 00e4d1f 0e46c31 4474065 f7f0543 d083399 9cea810 47247c5 d083399 5e0c956 d083399 5e0c956 f7f0543 a4f7f6f 00e4d1f a4f7f6f 90b9490 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import os
from PIL import Image
import torch
import gradio as gr
import torch
torch.backends.cudnn.benchmark = True
from torchvision import transforms, utils
from util import *
from PIL import Image
import math
import random
import numpy as np
from torch import nn, autograd, optim
from torch.nn import functional as F
from tqdm import tqdm
import lpips
from model import *
#from e4e_projection import projection as e4e_projection
from copy import deepcopy
import imageio
import os
import sys
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as transforms
from argparse import Namespace
from e4e.models.psp import pSp
from util import *
from huggingface_hub import hf_hub_download
device= 'cpu'
model_path_e = hf_hub_download(repo_id="Abhinowww/Capstone", filename="e4e_ffhq_encode.pt")
ckpt = torch.load(model_path_e, map_location='cpu')
opts = ckpt['opts']
opts['checkpoint_path'] = model_path_e
opts= Namespace(**opts)
net = pSp(opts, device).eval().to(device)
@ torch.no_grad()
def projection(img, name, device='cuda'):
transform = transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(256),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
]
)
img = transform(img).unsqueeze(0).to(device)
images, w_plus = net(img, randomize_noise=False, return_latents=True)
result_file = {}
result_file['latent'] = w_plus[0]
torch.save(result_file, name)
return w_plus[0]
device = 'cpu'
latent_dim = 512
model_path_s = hf_hub_download(repo_id="Abhinowww/Capstone", filename="stylegan2-ffhq-config-f.pt")
original_generator = Generator(1024, latent_dim, 8, 2).to(device)
ckpt = torch.load(model_path_s, map_location=lambda storage, loc: storage)
original_generator.load_state_dict(ckpt["g_ema"], strict=False)
mean_latent = original_generator.mean_latent(10000)
# print(ckpt.keys())
generatorjokerfalse = deepcopy(original_generator)
generatorjokertrue = deepcopy(original_generator)
generatorvoldemortfalse = deepcopy(original_generator)
generatorvoldemorttrue = deepcopy(original_generator)
generatorpushpa = deepcopy(original_generator)
generatorgiga = deepcopy(original_generator)
generatorsketchtrue = deepcopy(original_generator)
generatorsketchfalse = deepcopy(original_generator)
# generatorart = deepcopy(original_generator)
# generatorspider = deepcopy(original_generator)
# generatorsketch = deepcopy(original_generator)
transform = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
modeljokerfalse = hf_hub_download(repo_id="Abhinowww/Capstone", filename="JokerEightHundredFalse.pt")
ckptjokerfalse = torch.load(modeljokerfalse, map_location=lambda storage, loc: storage)
generatorjokerfalse.load_state_dict(ckptjokerfalse, strict=False)
modeljokertrue = hf_hub_download(repo_id="Abhinowww/Capstone", filename="JokerTwoHundredFiftyTrue.pt")
ckptjokertrue = torch.load(modeljokertrue, map_location=lambda storage, loc: storage)
generatorjokertrue.load_state_dict(ckptjokertrue, strict=False)
modelvoldemortfalse = hf_hub_download(repo_id="Abhinowww/Capstone", filename="VoldemortFourHundredFalse.pt")
ckptvoldemortfalse = torch.load(modelvoldemortfalse, map_location=lambda storage, loc: storage)
generatorvoldemortfalse.load_state_dict(ckptvoldemortfalse, strict=False)
modelvoldemorttrue = hf_hub_download(repo_id="Abhinowww/Capstone", filename="VoldemortThreeHundredTrue.pt")
ckptvoldemorttrue = torch.load(modelvoldemorttrue, map_location=lambda storage, loc: storage)
generatorvoldemorttrue.load_state_dict(ckptvoldemorttrue, strict=False)
modelpushpa = hf_hub_download(repo_id="Abhinowww/Capstone", filename="PushpaFourHundredFalse.pt")
ckptpushpa = torch.load(modelpushpa, map_location=lambda storage, loc: storage)
generatorpushpa.load_state_dict(ckptpushpa, strict=False)
modelgiga = hf_hub_download(repo_id="Abhinowww/Capstone", filename="GigachadFourHundredFalse.pt")
ckptgiga = torch.load(modelgiga, map_location=lambda storage, loc: storage)
generatorgiga.load_state_dict(ckptgiga, strict=False)
modelsketchtrue = hf_hub_download(repo_id="Abhinowww/Capstone", filename="OGSketchFourHundredTrue.pt")
ckptsketchtrue = torch.load(modelsketchtrue, map_location=lambda storage, loc: storage)
generatorsketchtrue.load_state_dict(ckptsketchtrue, strict=False)
modelsketchfalse = hf_hub_download(repo_id="Abhinowww/Capstone", filename="OGSketchFourHundredFalse.pt")
ckptsketchfalse = torch.load(modelsketchfalse, map_location=lambda storage, loc: storage)
generatorsketchfalse.load_state_dict(ckptsketchfalse, strict=False)
def inference(img, model):
img.save('out.jpg')
aligned_face = align_face('out.jpg')
my_w = projection(aligned_face, "test.pt", device).unsqueeze(0)
if model == 'Joker':
with torch.no_grad():
my_sample = generatorjokerfalse(my_w, input_is_latent=True)
elif model == 'Joker Preserve':
with torch.no_grad():
my_sample = generatorjokertrue(my_w, input_is_latent=True)
elif model == 'Voldemort':
with torch.no_grad():
my_sample = generatorvoldemortfalse(my_w, input_is_latent=True)
elif model == 'Voldemort Preserve':
with torch.no_grad():
my_sample = generatorvoldemorttrue(my_w, input_is_latent=True)
elif model == 'Pushpa':
with torch.no_grad():
my_sample = generatorpushpa(my_w, input_is_latent=True)
elif model == 'Gigachad':
with torch.no_grad():
my_sample = generatorgiga(my_w, input_is_latent=True)
elif model == 'Sketch':
with torch.no_grad():
my_sample = generatorsketchfalse(my_w, input_is_latent=True)
elif model == 'Sketch Preserve':
with torch.no_grad():
my_sample = generatorsketchtrue(my_w, input_is_latent=True)
# elif model == 'Art':
# with torch.no_grad():
# my_sample = generatorart(my_w, input_is_latent=True)
# elif model == 'Spider-Verse':
# with torch.no_grad():
# my_sample = generatorspider(my_w, input_is_latent=True)
# else:
# with torch.no_grad():
# my_sample = generatorsketch(my_w, input_is_latent=True)
npimage = my_sample[0].permute(1, 2, 0).detach().numpy()
imageio.imwrite('filename.jpeg', npimage)
return 'filename.jpeg'
title = "Image Generation Using Style Adaptation: A Capstone Project by Abhinav Bandaru"
description = "Upload your input image in the left, choose a style model, click on submit, and wait for it."
# article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.11641' target='_blank'>JoJoGAN: One Shot Face Stylization</a>| <a href='https://github.com/mchong6/JoJoGAN' target='_blank'>Github Repo Pytorch</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_jojogan' alt='visitor badge'></center>"
# examples=[['mona.png','Joker']]
# gr.Interface(inference, [gr.inputs.Image(type="pil"),gr.inputs.Dropdown(choices=['JoJo', 'Disney','Jinx','Caitlyn','Yasuho','Arcane Multi','Art','Spider-Verse','Sketch'], type="value", default='JoJo', label="Model")], gr.outputs.Image(type="pil"),title=title,description=description,article=article,allow_flagging=False,examples=examples,allow_screenshot=False).launch()
# css_code='body{background-image:url("https://picsum.photos/seed/picsum/200/300");}'
# gr.Interface(lambda x:x, "textbox", "textbox", css=css_code).launch(debug=True)
gr.Interface(inference, [gr.inputs.Image(type="pil"),gr.inputs.Dropdown(choices=['Joker', 'Joker Preserve', 'Voldemort', 'Voldemort Preserve', 'Pushpa', 'Gigachad', 'Sketch', 'Sketch Preserve'], type="value", default='Joker', label="Model")], gr.outputs.Image(type="pil"),title=title,description=description,allow_flagging=False,allow_screenshot=False).launch() |