File size: 8,027 Bytes
d083399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7f0543
d083399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7f0543
d083399
 
 
 
1fc87db
d083399
90b9490
d083399
90b9490
 
 
 
 
d083399
00e4d1f
d083399
0e46c31
d083399
4474065
d083399
4474065
d083399
f7f0543
d083399
f7f0543
d083399
f7f0543
d083399
 
 
 
 
 
 
 
 
 
 
90b9490
 
 
d083399
90b9490
 
 
d083399
90b9490
 
 
d083399
90b9490
 
 
d083399
00e4d1f
 
 
d083399
0e46c31
 
 
d083399
90b9490
4474065
 
 
90b9490
4474065
 
d083399
 
 
 
 
 
 
 
e16015d
d083399
90b9490
 
 
 
e16015d
d083399
90b9490
 
 
 
00e4d1f
 
 
0e46c31
 
 
4474065
 
 
 
 
 
f7f0543
 
 
 
 
 
 
 
 
d083399
 
 
 
 
 
9cea810
47247c5
d083399
5e0c956
d083399
5e0c956
f7f0543
a4f7f6f
00e4d1f
 
a4f7f6f
90b9490
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
from PIL import Image
import torch
import gradio as gr
import torch
torch.backends.cudnn.benchmark = True
from torchvision import transforms, utils
from util import *
from PIL import Image
import math
import random
import numpy as np
from torch import nn, autograd, optim
from torch.nn import functional as F
from tqdm import tqdm
import lpips
from model import *


#from e4e_projection import projection as e4e_projection

from copy import deepcopy
import imageio

import os
import sys
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as transforms
from argparse import Namespace
from e4e.models.psp import pSp
from util import *
from huggingface_hub import hf_hub_download

device= 'cpu'
model_path_e = hf_hub_download(repo_id="Abhinowww/Capstone", filename="e4e_ffhq_encode.pt")
ckpt = torch.load(model_path_e, map_location='cpu')
opts = ckpt['opts']
opts['checkpoint_path'] = model_path_e
opts= Namespace(**opts)
net = pSp(opts, device).eval().to(device)

@ torch.no_grad()
def projection(img, name, device='cuda'):
 
    
    transform = transforms.Compose(
        [
            transforms.Resize(256),
            transforms.CenterCrop(256),
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
        ]
    )
    img = transform(img).unsqueeze(0).to(device)
    images, w_plus = net(img, randomize_noise=False, return_latents=True)
    result_file = {}
    result_file['latent'] = w_plus[0]
    torch.save(result_file, name)
    return w_plus[0]




device = 'cpu' 


latent_dim = 512

model_path_s = hf_hub_download(repo_id="Abhinowww/Capstone", filename="stylegan2-ffhq-config-f.pt")
original_generator = Generator(1024, latent_dim, 8, 2).to(device)
ckpt = torch.load(model_path_s, map_location=lambda storage, loc: storage)
original_generator.load_state_dict(ckpt["g_ema"], strict=False)
mean_latent = original_generator.mean_latent(10000)
# print(ckpt.keys())

generatorjokerfalse = deepcopy(original_generator)

generatorjokertrue = deepcopy(original_generator)

generatorvoldemortfalse = deepcopy(original_generator)

generatorvoldemorttrue = deepcopy(original_generator)

generatorpushpa = deepcopy(original_generator)

generatorgiga = deepcopy(original_generator)

generatorsketchtrue = deepcopy(original_generator)

generatorsketchfalse = deepcopy(original_generator)

# generatorart = deepcopy(original_generator)

# generatorspider = deepcopy(original_generator)

# generatorsketch = deepcopy(original_generator)


transform = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    ]
)


modeljokerfalse = hf_hub_download(repo_id="Abhinowww/Capstone", filename="JokerEightHundredFalse.pt")
ckptjokerfalse = torch.load(modeljokerfalse, map_location=lambda storage, loc: storage)
generatorjokerfalse.load_state_dict(ckptjokerfalse, strict=False)

modeljokertrue = hf_hub_download(repo_id="Abhinowww/Capstone", filename="JokerTwoHundredFiftyTrue.pt")
ckptjokertrue = torch.load(modeljokertrue, map_location=lambda storage, loc: storage)
generatorjokertrue.load_state_dict(ckptjokertrue, strict=False)

modelvoldemortfalse = hf_hub_download(repo_id="Abhinowww/Capstone", filename="VoldemortFourHundredFalse.pt")
ckptvoldemortfalse = torch.load(modelvoldemortfalse, map_location=lambda storage, loc: storage)
generatorvoldemortfalse.load_state_dict(ckptvoldemortfalse, strict=False)

modelvoldemorttrue = hf_hub_download(repo_id="Abhinowww/Capstone", filename="VoldemortThreeHundredTrue.pt")
ckptvoldemorttrue = torch.load(modelvoldemorttrue, map_location=lambda storage, loc: storage)
generatorvoldemorttrue.load_state_dict(ckptvoldemorttrue, strict=False)

modelpushpa = hf_hub_download(repo_id="Abhinowww/Capstone", filename="PushpaFourHundredFalse.pt")
ckptpushpa = torch.load(modelpushpa, map_location=lambda storage, loc: storage)
generatorpushpa.load_state_dict(ckptpushpa, strict=False)

modelgiga = hf_hub_download(repo_id="Abhinowww/Capstone", filename="GigachadFourHundredFalse.pt")
ckptgiga = torch.load(modelgiga, map_location=lambda storage, loc: storage)
generatorgiga.load_state_dict(ckptgiga, strict=False)

modelsketchtrue = hf_hub_download(repo_id="Abhinowww/Capstone", filename="OGSketchFourHundredTrue.pt")
ckptsketchtrue = torch.load(modelsketchtrue, map_location=lambda storage, loc: storage)
generatorsketchtrue.load_state_dict(ckptsketchtrue, strict=False)

modelsketchfalse = hf_hub_download(repo_id="Abhinowww/Capstone", filename="OGSketchFourHundredFalse.pt")
ckptsketchfalse = torch.load(modelsketchfalse, map_location=lambda storage, loc: storage)
generatorsketchfalse.load_state_dict(ckptsketchfalse, strict=False)



def inference(img, model):  
    img.save('out.jpg')  
    aligned_face = align_face('out.jpg')
        
    my_w = projection(aligned_face, "test.pt", device).unsqueeze(0)
    if model == 'Joker':
        with torch.no_grad():
            my_sample = generatorjokerfalse(my_w, input_is_latent=True)  
    elif model == 'Joker Preserve':
        with torch.no_grad():
            my_sample = generatorjokertrue(my_w, input_is_latent=True)
    elif model == 'Voldemort':
        with torch.no_grad():
            my_sample = generatorvoldemortfalse(my_w, input_is_latent=True)
    elif model == 'Voldemort Preserve':
        with torch.no_grad():
            my_sample = generatorvoldemorttrue(my_w, input_is_latent=True)
    elif model == 'Pushpa':
        with torch.no_grad():
            my_sample = generatorpushpa(my_w, input_is_latent=True)
    elif model == 'Gigachad':
        with torch.no_grad():
            my_sample = generatorgiga(my_w, input_is_latent=True)
    elif model == 'Sketch':
        with torch.no_grad():
            my_sample = generatorsketchfalse(my_w, input_is_latent=True)
    elif model == 'Sketch Preserve':
        with torch.no_grad():
            my_sample = generatorsketchtrue(my_w, input_is_latent=True)
    # elif model == 'Art':
    #     with torch.no_grad():
    #         my_sample = generatorart(my_w, input_is_latent=True)
    # elif model == 'Spider-Verse':
    #     with torch.no_grad():
    #         my_sample = generatorspider(my_w, input_is_latent=True)
    # else:
    #     with torch.no_grad():
    #         my_sample = generatorsketch(my_w, input_is_latent=True)
            
    
    npimage = my_sample[0].permute(1, 2, 0).detach().numpy()
    imageio.imwrite('filename.jpeg', npimage)
    return 'filename.jpeg'
  
title = "Image Generation Using Style Adaptation: A Capstone Project by Abhinav Bandaru"
description = "Upload your input image in the left, choose a style model, click on submit, and wait for it."

# article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.11641' target='_blank'>JoJoGAN: One Shot Face Stylization</a>| <a href='https://github.com/mchong6/JoJoGAN' target='_blank'>Github Repo Pytorch</a></p> <center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_jojogan' alt='visitor badge'></center>"

# examples=[['mona.png','Joker']]
# gr.Interface(inference, [gr.inputs.Image(type="pil"),gr.inputs.Dropdown(choices=['JoJo', 'Disney','Jinx','Caitlyn','Yasuho','Arcane Multi','Art','Spider-Verse','Sketch'], type="value", default='JoJo', label="Model")], gr.outputs.Image(type="pil"),title=title,description=description,article=article,allow_flagging=False,examples=examples,allow_screenshot=False).launch()

# css_code='body{background-image:url("https://picsum.photos/seed/picsum/200/300");}'
# gr.Interface(lambda x:x, "textbox", "textbox", css=css_code).launch(debug=True)

gr.Interface(inference, [gr.inputs.Image(type="pil"),gr.inputs.Dropdown(choices=['Joker', 'Joker Preserve', 'Voldemort', 'Voldemort Preserve', 'Pushpa', 'Gigachad', 'Sketch', 'Sketch Preserve'], type="value", default='Joker', label="Model")], gr.outputs.Image(type="pil"),title=title,description=description,allow_flagging=False,allow_screenshot=False).launch()