Abs6187 commited on
Commit
e5d7180
·
verified ·
1 Parent(s): 0e99a04

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +27 -123
app.py CHANGED
@@ -1,126 +1,30 @@
1
- import time
2
- import os
3
  import streamlit as st
4
- from langchain_community.vectorstores import FAISS
5
- from langchain_community.embeddings import HuggingFaceEmbeddings
6
- from langchain.prompts import PromptTemplate
7
- from langchain.memory import ConversationBufferWindowMemory
8
- from langchain.chains import ConversationalRetrievalChain
9
- from langchain_together import Together
10
-
11
- from footer import footer
12
-
13
- # Set the Streamlit page configuration and theme
14
- st.set_page_config(page_title="BharatLAW", layout="centered")
15
-
16
- # Display the logo image
17
- col1, col2, col3 = st.columns([1, 30, 1])
18
- with col2:
19
- st.image("https://github.com/Nike-one/BharatLAW/blob/master/images/banner.png?raw=true", use_column_width=True)
20
-
21
- def hide_hamburger_menu():
22
- st.markdown("""
23
- <style>
24
- #MainMenu {visibility: hidden;}
25
- footer {visibility: hidden;}
26
- </style>
27
- """, unsafe_allow_html=True)
28
-
29
- hide_hamburger_menu()
30
-
31
- # Initialize session state for messages and memory
32
- if "messages" not in st.session_state:
33
- st.session_state.messages = []
34
-
35
- if "memory" not in st.session_state:
36
- st.session_state.memory = ConversationBufferWindowMemory(k=2, memory_key="chat_history", return_messages=True)
37
 
 
38
  @st.cache_resource
39
- def load_embeddings():
40
- """Load and cache the embeddings model."""
41
- return HuggingFaceEmbeddings(model_name="law-ai/InLegalBERT")
42
-
43
- embeddings = load_embeddings()
44
- db = FAISS.load_local("ipc_embed_db", embeddings, allow_dangerous_deserialization=True)
45
- db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 3})
46
-
47
- prompt_template = """
48
- <s>[INST]
49
- As a legal chatbot specializing in the Indian Penal Code, you are tasked with providing highly accurate and contextually appropriate responses. Ensure your answers meet these criteria:
50
- - Respond in a bullet-point format to clearly delineate distinct aspects of the legal query.
51
- - Each point should accurately reflect the breadth of the legal provision in question, avoiding over-specificity unless directly relevant to the user's query.
52
- - Clarify the general applicability of the legal rules or sections mentioned, highlighting any common misconceptions or frequently misunderstood aspects.
53
- - Limit responses to essential information that directly addresses the user's question, providing concise yet comprehensive explanations.
54
- - Avoid assuming specific contexts or details not provided in the query, focusing on delivering universally applicable legal interpretations unless otherwise specified.
55
- - Conclude with a brief summary that captures the essence of the legal discussion and corrects any common misinterpretations related to the topic.
56
-
57
- CONTEXT: {context}
58
- CHAT HISTORY: {chat_history}
59
- QUESTION: {question}
60
- ANSWER:
61
- - [Detail the first key aspect of the law, ensuring it reflects general application]
62
- - [Provide a concise explanation of how the law is typically interpreted or applied]
63
- - [Correct a common misconception or clarify a frequently misunderstood aspect]
64
- - [Detail any exceptions to the general rule, if applicable]
65
- - [Include any additional relevant information that directly relates to the user's query]
66
- </s>[INST]
67
- """
68
-
69
-
70
-
71
- prompt = PromptTemplate(template=prompt_template,
72
- input_variables=['context', 'question', 'chat_history'])
73
-
74
- api_key = os.getenv('TOGETHER_API_KEY')
75
- llm = Together(model="mistralai/Mixtral-8x22B-Instruct-v0.1", temperature=0.5, max_tokens=1024, together_api_key=api_key)
76
-
77
- qa = ConversationalRetrievalChain.from_llm(llm=llm, memory=st.session_state.memory, retriever=db_retriever, combine_docs_chain_kwargs={'prompt': prompt})
78
-
79
- def extract_answer(full_response):
80
- """Extracts the answer from the LLM's full response by removing the instructional text."""
81
- answer_start = full_response.find("Response:")
82
- if answer_start != -1:
83
- answer_start += len("Response:")
84
- answer_end = len(full_response)
85
- return full_response[answer_start:answer_end].strip()
86
- return full_response
87
-
88
- def reset_conversation():
89
- st.session_state.messages = []
90
- st.session_state.memory.clear()
91
-
92
- for message in st.session_state.messages:
93
- with st.chat_message(message["role"]):
94
- st.write(message["content"])
95
-
96
-
97
- input_prompt = st.chat_input("Say something...")
98
- if input_prompt:
99
- with st.chat_message("user"):
100
- st.markdown(f"**You:** {input_prompt}")
101
-
102
- st.session_state.messages.append({"role": "user", "content": input_prompt})
103
- with st.chat_message("assistant"):
104
- with st.spinner("Thinking 💡..."):
105
- result = qa.invoke(input=input_prompt)
106
- message_placeholder = st.empty()
107
- answer = extract_answer(result["answer"])
108
-
109
- # Initialize the response message
110
- full_response = "⚠️ **_Gentle reminder: We generally ensure precise information, but do double-check._** \n\n\n"
111
- for chunk in answer:
112
- # Simulate typing by appending chunks of the response over time
113
- full_response += chunk
114
- time.sleep(0.02) # Adjust the sleep time to control the "typing" speed
115
- message_placeholder.markdown(full_response + " |", unsafe_allow_html=True)
116
-
117
- st.session_state.messages.append({"role": "assistant", "content": answer})
118
-
119
- if st.button('🗑️ Reset All Chat', on_click=reset_conversation):
120
- st.experimental_rerun()
121
-
122
-
123
-
124
- # Define the CSS to style the footer
125
- footer()
126
-
 
 
 
1
  import streamlit as st
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
+ # Load the tokenizer and model from local files
5
  @st.cache_resource
6
+ def load_model():
7
+ tokenizer = AutoTokenizer.from_pretrained("./", config="config.json")
8
+ model = AutoModelForCausalLM.from_pretrained("./")
9
+ return tokenizer, model
10
+
11
+ # Initialize the model and tokenizer
12
+ tokenizer, model = load_model()
13
+
14
+ # Set up Streamlit page configuration
15
+ st.set_page_config(page_title="Legal AI Chatbot", layout="centered")
16
+
17
+ st.title("Legal AI Chatbot")
18
+ st.write("This chatbot provides responses based on a legal language model.")
19
+
20
+ # User input
21
+ user_input = st.text_input("Enter your query:")
22
+
23
+ if user_input:
24
+ # Tokenize and generate response
25
+ inputs = tokenizer.encode(user_input, return_tensors="pt")
26
+ outputs = model.generate(inputs, max_length=150, num_return_sequences=1)
27
+
28
+ # Decode and display the output
29
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
30
+ st.text_area("Response:", response, height=200)