|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
|
|
import os |
|
import time |
|
import asyncio |
|
|
|
from pipeline import PromptEnhancer |
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
|
|
|
|
|
|
async def advancedPromptPipeline(InputPrompt): |
|
|
|
model="gpt-4o-mini" |
|
|
|
if model == "gpt-4o": |
|
i_cost=5/10**6 |
|
o_cost=15/10**6 |
|
elif model == "gpt-4o-mini": |
|
i_cost=0.15/10**6 |
|
o_cost=0.6/10**6 |
|
|
|
enhancer = PromptEnhancer(model) |
|
|
|
start_time = time.time() |
|
advanced_prompt = await enhancer.enhance_prompt(input_prompt, perform_eval=False) |
|
elapsed_time = time.time() - start_time |
|
|
|
|
|
"""return { |
|
"model": model, |
|
"elapsed_time": elapsed_time, |
|
"prompt_tokens": enhancer.prompt_tokens, |
|
"completion_tokens": enhancer.completion_tokens, |
|
"approximate_cost": (enhancer.prompt_tokens*i_cost)+(enhancer.completion_tokens*o_cost), |
|
"inout_prompt": input_prompt, |
|
"advanced_prompt": advanced_prompt["advanced_prompt"], |
|
}""" |
|
|
|
return advanced_prompt["advanced_prompt"] |
|
|
|
|
|
def respond( |
|
message, |
|
|
|
|
|
|
|
|
|
|
|
): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
response = "" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo = gr.Interface(fn=advancedPromptPipeline, inputs="textbox", outputs="textbox") |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |