Deepifra / app.py
AdarshJi's picture
Update app.py
b3aba20 verified
raw
history blame
4.27 kB
import uvicorn
import json
import requests
from flask import Flask, request, jsonify
from flask import Response, stream_with_context
app = Flask(__name__)
rq = requests.Session()
model_names = [
"meta-llama/Meta-Llama-3-70B-Instruct",
"meta-llama/Meta-Llama-3-8B-Instruct",
"mistralai/Mixtral-8x22B-Instruct-v0.1",
"mistralai/Mixtral-8x22B-v0.1",
"microsoft/WizardLM-2-8x22B",
"microsoft/WizardLM-2-7B",
"HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1",
"google/gemma-1.1-7b-it",
"databricks/dbrx-instruct",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.2",
"meta-llama/Llama-2-70b-chat-hf",
"cognitivecomputations/dolphin-2.6-mixtral-8x7b",
"codellama/CodeLlama-70b-Instruct-hf"
]
def DeepinFra_No_stream(Api:str, messages:list ,model:str = "meta-llama/Meta-Llama-3-70B-Instruct", max_tokens: int = 512, temperature: float = 0.7):
url = "https://api.deepinfra.com/v1/openai/chat/completions"
headers = {
"accept": "text/event-stream",
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36",
}
data = json.dumps(
{
'model': model,
'messages': messages,
'temperature': temperature,
'max_tokens': max_tokens,
'stop': [],
'stream': False
}, separators=(',', ':')
)
try:
result = rq.post(url=url, headers=headers, data=data)
return result.json()['choices'][0]['message']['content']
except:
return "Response content: " + result.text
def DeepinFra_stream(Api:str, messages:list ,model: str = "meta-llama/Meta-Llama-3-70B-Instruct", max_tokens: int = 512, temperature: float = 0.7):
url = "https://api.deepinfra.com/v1/openai/chat/completions"
headers ={
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36",
'Content-Type': 'application/json',
'Accept': 'text/event-stream',
}
data = json.dumps(
{
'model': model,
'messages': messages,
'temperature': temperature,
'max_tokens': max_tokens,
'stream': True
}, separators=(',', ':')
)
try:
result = rq.post(url=url, headers=headers, data=data, stream=True)
for line in result.iter_lines():
if line:
line = line.decode('utf-8')
data_json = line.split('data: ')[1]
data = json.loads(data_json)
try:
content = data['choices'][0]['delta']['content']
yield content
except:
break
except:
return "Response content: " + result.text
@app.route("/generate-text-deep", methods=["POST"])
def generate_text():
data = request.json
message = data.get("message")
Api = data.get("api_key")
model_name = data.get("model_name", "meta-llama/Meta-Llama-3-70B-Instruct")
max_tokens = data.get("max_tokens", 512)
temperature = data.get("temperature", 0.7)
stream = data.get("stream", True)
if not message or not Api:
return jsonify({"error": "Missing required fields"}), 400
def generate_response(stream: bool):
if stream:
for response in DeepinFra_stream(Api=Api, messages=message, model=model_name, max_tokens=max_tokens,
temperature=temperature):
yield json.dumps({"response": response}) + "\n"
else:
response = DeepinFra_No_stream(Api=Api, messages=message, model=model_name, max_tokens=max_tokens,
temperature=temperature)
yield json.dumps({"response": response}) + "\n"
return Response(stream_with_context(generate_response(stream)), content_type='application/json'), 200
@app.route("/info", methods=["GET"])
def get_info():
return jsonify({"model_names": model_names}), 200
if __name__=="__main__":
app.run()