Spaces:
Runtime error
Runtime error
File size: 3,044 Bytes
2cd131f 2b6a7bc 2cd131f 2b6a7bc b2aa777 87ab71f 2b6a7bc b2aa777 2b6a7bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
import torch
from transformers import AutoTokenizer, T5ForConditionalGeneration
from datasets import load_dataset
import faiss
import numpy as np
import streamlit as st
# Load the datasets from Hugging Face
datasets_dict = {}
# Function to load datasets safely
def load_datasets():
global datasets_dict
try:
datasets_dict["BillSum"] = load_dataset("billsum")
except Exception as e:
st.error(f"Error loading BillSum dataset: {e}")
try:
datasets_dict["EurLex"] = load_dataset("eurlex", trust_remote_code=True) # Set trust_remote_code=True
except Exception as e:
st.error(f"Error loading EurLex dataset: {e}")
# Load datasets at the start
load_datasets()
# Load the T5 model and tokenizer for summarization
t5_tokenizer = AutoTokenizer.from_pretrained("t5-base")
t5_model = T5ForConditionalGeneration.from_pretrained("t5-base")
# Initialize variables for the selected dataset
selected_dataset = "BillSum"
documents = []
titles = []
# Prepare the dataset for retrieval based on user selection
def prepare_dataset(dataset_name):
global documents, titles
dataset = datasets_dict[dataset_name]
documents = dataset['train']['text'][:100] # Use a subset for demo purposes
titles = dataset['train']['title'][:100] # Get corresponding titles
# Function for case retrieval and summarization
def retrieve_cases(query):
# Implement a simple keyword-based search for demo purposes
return [(doc, title) for doc, title in zip(documents, titles) if query.lower() in doc.lower()]
def summarize_cases(cases):
summaries = []
for case in cases:
input_ids = t5_tokenizer.encode(case[0], return_tensors="pt", max_length=512, truncation=True)
outputs = t5_model.generate(input_ids, max_length=60, min_length=30, length_penalty=2.0, num_beams=4, early_stopping=True)
summary = t5_tokenizer.decode(outputs[0], skip_special_tokens=True)
summaries.append(summary)
return summaries
# Streamlit App Code
st.title("Legal Case Summarizer")
st.write("Select a dataset and enter keywords to retrieve and summarize relevant cases.")
# Dropdown for selecting dataset
dataset_options = list(datasets_dict.keys())
selected_dataset = st.selectbox("Choose a dataset:", dataset_options)
# Prepare the selected dataset
prepare_dataset(selected_dataset)
query = st.text_input("Enter search keywords:", "healthcare")
if st.button("Retrieve and Summarize Cases"):
with st.spinner("Retrieving and summarizing cases..."):
cases = retrieve_cases(query)
if cases:
summaries = summarize_cases(cases)
for i, (case, title) in enumerate(cases):
summary = summaries[i]
st.write(f"### Case {i + 1}")
st.write(f"**Title:** {title}")
st.write(f"**Case Text:** {case[0]}")
st.write(f"**Summary:** {summary}")
else:
st.write("No cases found for the given query.")
st.write("Using T5 for summarization and retrieval.")
|