AhmedSSabir
commited on
Commit
•
55e5d9c
1
Parent(s):
37b9ac3
Update app.py
Browse files
app.py
CHANGED
@@ -18,8 +18,8 @@ import requests
|
|
18 |
#from sentence_transformers import SentenceTransformer, util
|
19 |
#from sklearn.metrics.pairwise import cosine_similarity
|
20 |
|
21 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
22 |
-
|
23 |
|
24 |
#SentenceTransformer('stsb-distilbert-base', device=device)
|
25 |
|
@@ -43,9 +43,16 @@ def softmax(x):
|
|
43 |
return np.divide(exps, np.sum(exps))
|
44 |
|
45 |
# Load pre-trained model
|
46 |
-
|
|
|
|
|
|
|
|
|
47 |
model.eval()
|
48 |
-
tokenizer =
|
|
|
|
|
|
|
49 |
|
50 |
|
51 |
def cloze_prob(text):
|
@@ -102,7 +109,7 @@ def Visual_re_ranker(caption, visual_context_label, visual_context_prob):
|
|
102 |
visual_context_label= visual_context_label
|
103 |
visual_context_prob = visual_context_prob
|
104 |
caption_emb = model.encode(caption, convert_to_tensor=True)
|
105 |
-
visual_context_label_emb =
|
106 |
|
107 |
|
108 |
sim = cosine_scores = util.pytorch_cos_sim(caption_emb, visual_context_label_emb)
|
|
|
18 |
#from sentence_transformers import SentenceTransformer, util
|
19 |
#from sklearn.metrics.pairwise import cosine_similarity
|
20 |
|
21 |
+
#device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
22 |
+
model_1 = gr.interface.huggingface.load('sentence-transformers/stsb-distilbert-base')
|
23 |
|
24 |
#SentenceTransformer('stsb-distilbert-base', device=device)
|
25 |
|
|
|
43 |
return np.divide(exps, np.sum(exps))
|
44 |
|
45 |
# Load pre-trained model
|
46 |
+
|
47 |
+
#model = GPT2LMHeadModel.from_pretrained('distilgpt2', output_hidden_states = True, output_attentions = True)
|
48 |
+
|
49 |
+
model = gr.interface.huggingface.load('distilgpt2', output_hidden_states = True, output_attentions = True)
|
50 |
+
|
51 |
model.eval()
|
52 |
+
tokenizer = gr.interface.huggingface.load('distilgpt2')
|
53 |
+
|
54 |
+
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
55 |
+
#tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
|
56 |
|
57 |
|
58 |
def cloze_prob(text):
|
|
|
109 |
visual_context_label= visual_context_label
|
110 |
visual_context_prob = visual_context_prob
|
111 |
caption_emb = model.encode(caption, convert_to_tensor=True)
|
112 |
+
visual_context_label_emb = model_1.encode(visual_context_label, convert_to_tensor=True)
|
113 |
|
114 |
|
115 |
sim = cosine_scores = util.pytorch_cos_sim(caption_emb, visual_context_label_emb)
|