audio-creator / audio.py
vmoras's picture
Initial commit
a95b578
raw
history blame
6.33 kB
import re
import os
import nltk
import torch
import pickle
import torchaudio
import numpy as np
import gradio as gr
from google.cloud import storage
from TTS.tts.models.xtts import Xtts
from nltk.tokenize import sent_tokenize
from huggingface_hub import hf_hub_download
from TTS.tts.configs.xtts_config import XttsConfig
def _download_starting_files() -> None:
"""
Downloads the embeddings from a bucket
"""
os.makedirs('assets', exist_ok=True)
# Download credentials file
hf_hub_download(
repo_id=os.environ.get('DATA'), repo_type='dataset', filename="credentials.json",
token=os.environ.get('HUB_TOKEN'), local_dir="assets"
)
# Initialise a client
credentials = os.getenv('GOOGLE_APPLICATION_CREDENTIALS')
storage_client = storage.Client.from_service_account_json(credentials)
bucket = storage_client.get_bucket('embeddings-bella')
# Get both embeddings
blob = bucket.blob("gpt_cond_latent.npy")
blob.download_to_filename('assets/gpt_cond_latent.npy')
blob = bucket.blob("speaker_embedding.npy")
blob.download_to_filename('assets/speaker_embedding.npy')
def _load_array(filename):
"""
Opens a file a returns it, used with numpy files
"""
with open(filename, 'rb') as f:
return pickle.load(f)
# Get embeddings
_download_starting_files()
os.environ['COQUI_TOS_AGREED'] = '1'
# Used to generate audio based on a sample
nltk.download('punkt')
model_path = os.path.join("tts_model")
config = XttsConfig()
config.load_json(os.path.join(model_path, "config.json"))
model = Xtts.init_from_config(config)
model.load_checkpoint(
config,
checkpoint_path=os.path.join(model_path, "model.pth"),
vocab_path=os.path.join(model_path, "vocab.json"),
eval=True,
use_deepspeed=True,
)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model.to(device)
# Speaker latent
path_latents = 'assets/gpt_cond_latent.npy'
gpt_cond_latent = _load_array(path_latents)
# Speaker embedding
path_embedding = 'assets/speaker_embedding.npy'
speaker_embedding = _load_array(path_embedding)
def get_audio(text: str, language: str = 'es') -> gr.Audio:
"""
Returns a link from a bucket in GCP that contains the generated audio given a text and language and the
name of such audio
:param text: used to generate the audio
:param language: 'es', 'en' or 'pt'
:return link_audio and name_audio
"""
# Creates an audio with the answer and saves it as output.wav
_save_audio(text, language)
return gr.Audio(value='output.wav', interactive=False, visible=True)
def _save_audio(answer: str, language: str) -> None:
"""
Splits the answer into sentences, clean and creates an audio for each one, then concatenates
all the audios and saves them into a file (output.wav)
"""
# Split the answer into sentences and clean it
sentences = _get_clean_answer(answer, language)
# Get the voice of each sentence
audio_segments = []
for sentence in sentences:
audio_stream = _get_voice(sentence, language)
audio_stream = torch.tensor(audio_stream)
audio_segments.append(audio_stream)
# Concatenate and save all audio segments
concatenated_audio = torch.cat(audio_segments, dim=0)
torchaudio.save('output.wav', concatenated_audio.unsqueeze(0), 24000)
def _get_voice(sentence: str, language: str) -> np.ndarray:
"""
Returns a numpy array with a wav of an audio with the given sentence and language
"""
out = model.inference(
sentence,
language=language,
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
temperature=0.1
)
return out['wav']
def _get_clean_answer(answer: str, language: str) -> list[str]:
"""
Returns a list of sentences of the answer. It also removes links
"""
# Remove the links in the audio and add another sentence
if language == 'en':
clean_answer = re.sub(r'http[s]?://\S+', 'the following link', answer)
max_characters = 250
elif language == 'es':
clean_answer = re.sub(r'http[s]?://\S+', 'el siguiente link', answer)
max_characters = 239
else:
clean_answer = re.sub(r'http[s]?://\S+', 'o seguinte link', answer)
max_characters = 203
# Change the name from Bella to Bela
clean_answer = clean_answer.replace('Bella', 'Bela')
# Remove Florida and zipcode
clean_answer = re.sub(r', FL \d+', "", clean_answer)
# Split the answer into sentences with nltk and make sure they are shorter than the maximum possible
# characters
split_sentences = sent_tokenize(clean_answer)
sentences = []
for sentence in split_sentences:
if len(sentence) > max_characters:
sentences.extend(split_sentence(sentence, max_characters))
else:
sentences.append(sentence)
return sentences
def split_sentence(sentence: str, max_characters: int) -> list[str]:
"""
Returns a split sentences. The split point is the nearest comma to the middle
of the sentence, if there is no comma then a space is used or just the middle. If the
remaining sentences are still too long, another iteration is run
"""
# Get index of each comma
sentences = []
commas = [i for i, c in enumerate(sentence) if c == ',']
# No commas, search for spaces
if len(commas) == 0:
commas = [i for i, c in enumerate(sentence) if c == ' ']
# No commas or spaces, split it in the middle
if len(commas) == 0:
sentences.append(sentence[:len(sentence) // 2])
sentences.append(sentence[len(sentence) // 2:])
return sentences
# Nearest index to the middle
split_point = min(commas, key=lambda x: abs(x - (len(sentence) // 2)))
if sentence[split_point] == ',':
left = sentence[:split_point]
right = sentence[split_point + 2:]
else:
left = sentence[:split_point]
right = sentence[split_point + 1:]
if len(left) > max_characters:
sentences.extend(split_sentence(left, max_characters))
else:
sentences.append(left)
if len(right) > max_characters:
sentences.extend(split_sentence(right, max_characters))
else:
sentences.append(right)
return sentences