Jim_Aiden / app_Jim20240322.py
AidenYan's picture
Create app_Jim20240322.py
34571c8 verified
raw
history blame
2.91 kB
import streamlit as st
from transformers import pipeline
#from diffusers import DiffusionPipeline
from PIL import Image
import requests
import io
from io import BytesIO
# Load the image-to-text pipeline
image_to_text = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
# Load the text mask pipeline
generate_mask = pipeline("fill-mask", model="google-bert/bert-base-uncased")
# Load the text generation pipeline
extend_text = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2")
# Load the text-to-image model
#text_to_image = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
def main():
st.title("SmartCart (Product Recommender)")
# User input for text or URL
input_option = st.radio("Select input option:", ("Text", "URL"))
# Input text
if input_option == "Text":
text_input = st.text_input("Enter the text:")
if st.button("Generate Story and Image") and text_input:
#generate_image(text_input)
generated_text = generate_mask_from_result(text_input)
st.success(f'Generated Caption: {text_input}')
st.success(f'Generated Text: {generated_text}')
# Input URL
elif input_option == "URL":
image_url = st.text_input("Enter the image URL:")
if st.button("Generate Story and Image") and image_url:
image_text = image_to_text_from_url(image_url)
#generate_image(image_text)
generated_text = generate_mask_from_result(image_text)
st.success(f'Generated Caption: {image_text}')
st.success(f'Generated Text: {generated_text}')
def image_to_text_from_file(uploaded_file):
image_bytes = io.BytesIO(uploaded_file.read())
return image_to_text(image_bytes)[0]['generated_text']
def image_to_text_from_url(image_url):
response = requests.get(image_url)
image_bytes = Image.open(BytesIO(response.content))
return image_to_text(image_bytes)[0]['generated_text']
def generate_image(text):
rephrased_text = "I want to buy " + text + " and [MASK] for my children"
generated_image = text_to_image(rephrased_text)
st.image(generated_image, caption="Generated Image", use_column_width=True)
def generate_mask_from_result(text):
output = generate_mask(f"I want to buy 2 toys for my children. I will buy {text} and [MASK].")
if output and output[0]['token_str'] == text:
# If the first result matches the input, get the second output instead
second_output = output[1] if len(output) > 1 else None
result = second_output['token_str'] if second_output else None
else:
result = output[0]['token_str'] if output else None
extended_text = extend_text(f"A child with {text} and {result} ")
return extended_text[0]['generated_text']
if __name__ == "__main__":
main()