Spaces:
Running
on
Zero
Running
on
Zero
File size: 6,105 Bytes
7a3d678 5fad7da c0f4ece 5fad7da 4fd86e6 b6517cd 7a3d678 1779015 546800a 7a3d678 546800a 7a3d678 5fad7da 7a3d678 c0f4ece 5fad7da b6517cd 5fad7da 1779015 4fd86e6 c0f4ece 5fad7da c0f4ece 7a3d678 5fad7da 7a3d678 77ad73e 7a3d678 397db89 7a3d678 c0f4ece 7a3d678 13500a1 7a3d678 397db89 c86e792 397db89 7a3d678 5fad7da 469d515 7a3d678 5fad7da 7a3d678 c86e792 379ca27 c86e792 7a3d678 379ca27 7a3d678 469d515 7a3d678 77ad73e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import spaces
import torch
from diffusers import FluxInpaintPipeline
import gradio as gr
import re
from PIL import Image
import os
import numpy as np
def convert_to_fit_size(original_width_and_height, maximum_size = 2048):
width, height =original_width_and_height
if width <= maximum_size and height <= maximum_size:
return width,height
if width > height:
scaling_factor = maximum_size / width
else:
scaling_factor = maximum_size / height
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
return new_width, new_height
def adjust_to_multiple_of_32(width: int, height: int):
width = width - (width % 32)
height = height - (height % 32)
return width, height
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(device)
def sanitize_prompt(prompt):
# Allow only alphanumeric characters, spaces, and basic punctuation
allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
sanitized_prompt = allowed_chars.sub("", prompt)
return sanitized_prompt
@spaces.GPU(duration=120)
def process_images(image, image2=None,prompt="a girl",inpaint_model="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,progress=gr.Progress(track_tqdm=True)):
# I'm not sure when this happen
progress(0, desc="start-process-images")
print("start-process-images")
if not isinstance(image, dict):
if image2 == None:
print("empty mask")
return image,None
else:
image = dict({'background': image, 'layers': [image2]})
if image2!=None:
#print("use image2")
mask = image2
else:
if len(image['layers']) == 0:
print("empty mask")
return image
print("use layer")
mask = image['layers'][0]
def process_inpaint(image,mask_image,prompt="a person",model_id="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,num_inference_steps=4):
if image == None:
return None
generators = []
generator = torch.Generator("cuda").manual_seed(seed)
generators.append(generator)
width,height = convert_to_fit_size(image.size)
print(f"fit {width}x{height}")
width,height = adjust_to_multiple_of_32(width,height)
print(f"multiple {width}x{height}")
image = image.resize((width, height), Image.LANCZOS)
mask = mask.resize((width, height), Image.NEAREST)
output = pipe(prompt=prompt, image=image, mask_image=mask_image,generator=generator,strength=strength,width=width,height=height,
guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256)
return output.images[0]
output = process_inpaint(image["background"],mask,prompt,inpaint_model,strength,seed)
return output,mask
def read_file(path: str) -> str:
with open(path, 'r', encoding='utf-8') as f:
content = f.read()
return content
css="""
#col-left {
margin: 0 auto;
max-width: 640px;
}
#col-right {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css, elem_id="demo-container") as demo:
with gr.Column():
gr.HTML(read_file("demo_header.html"))
with gr.Row():
with gr.Column():
image = gr.ImageEditor(height=800,sources=['upload','clipboard'],transforms=[],image_mode='RGB', layers=False, elem_id="image_upload", type="pil", label="Upload",brush=gr.Brush(colors=["#fff"], color_mode="fixed"))
with gr.Row(elem_id="prompt-container", equal_height=False):
with gr.Row():
prompt = gr.Textbox(label="Prompt",value="a person",placeholder="Your prompt (what you want in place of what is erased)", elem_id="prompt")
btn = gr.Button("Inpaint", elem_id="run_button",variant="primary")
image_mask = gr.Image(sources=['upload','clipboard'], elem_id="mask_upload", type="pil", label="Mask_Upload",height=400, value=None)
with gr.Accordion(label="Advanced Settings", open=False):
with gr.Row( equal_height=True):
strength = gr.Number(value=0.75, minimum=0, maximum=1.0, step=0.01, label="Inpaint strength")
seed = gr.Number(value=0, minimum=0, step=1, label="Inpaint seed")
models = ["black-forest-labs/FLUX.1-schnell"]
inpaint_model = gr.Dropdown(label="modes", choices=models, value="black-forest-labs/FLUX.1-schnell")
id_input=gr.Text(label="Name", visible=False)
with gr.Column():
image_out = gr.Image(height=800,sources=[],label="Output", elem_id="output-img",format="webp")
mask_out = gr.Image(height=800,sources=[],label="Mask", elem_id="mask-img",format="jpeg")
btn.click(fn=process_images, inputs=[image, image_mask,prompt,inpaint_model,strength,seed], outputs =[image_out,mask_out], api_name='infer')
gr.Examples(
examples=[
["images/00547245_99.jpg", "images/00547245_99_mask.jpg","a beautiful girl,eyes closed",0.8,"images/00547245.jpg"],
["images/00538245_paint.jpg", "images/00538245_mask.jpg","a beautiful girl,wearing t-shirt",0.7,"images/00538245.jpg"],
["images/00207245_18.jpg", "images/00207245_18_mask.jpg","a beautiful girl,mouth opened",0.2,"images/00207245.jpg"]
]
,
#fn=example_out,
inputs=[image,image_mask,prompt,strength,image_out],
#outputs=[test_out],
#cache_examples=False,
)
gr.HTML(
"""
"""
)
demo.launch()
|