File size: 8,053 Bytes
7a3d678
5fad7da
 
c0f4ece
 
0c03a70
c0f4ece
 
 
 
5fad7da
4fd86e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c03a70
 
 
 
 
 
 
 
 
 
4fd86e6
 
b6517cd
 
 
 
 
 
 
 
 
7a3d678
 
 
 
 
 
 
1779015
0c03a70
7a3d678
409a240
e97db9b
7a3d678
 
344fffb
5fad7da
7a3d678
 
 
 
 
 
 
 
344fffb
7a3d678
344fffb
7a3d678
 
 
c0f4ece
5fad7da
 
b6517cd
5fad7da
 
 
 
1779015
0c03a70
f186505
0c03a70
f186505
4fd86e6
1415b12
f0a134a
 
4fd86e6
c0f4ece
5fad7da
0c03a70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fad7da
f186505
7a3d678
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f2132a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a3d678
77ad73e
 
7a3d678
 
bc80923
7a3d678
 
397db89
7a3d678
0c03a70
 
 
 
13500a1
7a3d678
 
 
 
397db89
 
 
 
c86e792
397db89
7a3d678
5fad7da
 
469d515
7a3d678
 
 
0c03a70
7a3d678
c86e792
fb4f005
 
3333379
8f2132a
c86e792
7a3d678
379ca27
 
 
 
7a3d678
 
8f2132a
7a3d678
 
6f28201
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import spaces
import torch
from diffusers import FluxInpaintPipeline
import gradio as gr
import re
from PIL import Image,ImageFilter

import os
import numpy as np


def convert_to_fit_size(original_width_and_height, maximum_size = 2048):
    width, height =original_width_and_height
    if width <= maximum_size and height <= maximum_size:
        return width,height
    
    if width > height:
        scaling_factor = maximum_size / width
    else:
        scaling_factor = maximum_size / height

    new_width = int(width * scaling_factor)
    new_height = int(height * scaling_factor)
    return new_width, new_height

def adjust_to_multiple_of_32(width: int, height: int):
    width = width - (width % 32)
    height = height - (height % 32)
    return width, height

def mask_to_donut(mask,size):
    if size%2 ==0:
        size+=1
    dilation_mask = mask.filter(ImageFilter.MaxFilter(size))

    white_img = Image.new('RGB', mask.size, (255,255,255))
    black_img = Image.new('RGB', mask.size, (0,0,0))
    white_img.paste(black_img,(0,0),dilation_mask.convert("L"))
    white_img.paste(mask,(0,0),mask.convert("L"))
    return white_img


dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(device)






def sanitize_prompt(prompt):
  # Allow only alphanumeric characters, spaces, and basic punctuation
  allowed_chars = re.compile(r"[^a-zA-Z0-9\s.,!?-]")
  sanitized_prompt = allowed_chars.sub("", prompt)
  return sanitized_prompt

@spaces.GPU(duration=120)
def process_images(image, image2=None,prompt="a girl",inpaint_model="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,donut_mask=True,donut_size=32,progress=gr.Progress(track_tqdm=True)):
    # I'm not sure when this happen
    progress(0, desc="start-process-images")
    #print("start-process-images")
    if not isinstance(image, dict):
        if image2 == None:
             #print("empty mask")
             return image,None
        else:
            image = dict({'background': image, 'layers': [image2]})

    if image2!=None:
         #print("use image2")
         mask = image2
    else:
         if len(image['layers']) == 0:
              #print("empty mask")
              return image
         #print("use layer")
         mask = image['layers'][0]


    def process_inpaint(image,mask_image,prompt="a person",model_id="black-forest-labs/FLUX.1-schnell",strength=0.75,seed=0,num_inference_steps=4):
        if image == None:
            return None
   

        generators = []
        generator = torch.Generator("cuda").manual_seed(seed)
        generators.append(generator)
        
        fit_width,fit_height = convert_to_fit_size(image.size)
        #print(f"fit {width}x{height}")
        width,height = adjust_to_multiple_of_32(fit_width,fit_height)
        #print(f"multiple {width}x{height}")
        image = image.resize((width, height), Image.LANCZOS)
        mask_image = mask_image.resize((width, height), Image.NEAREST)
        mask_image = mask_image.convert("RGB")
        
        output = pipe(prompt=prompt, image=image, mask_image=mask_image,generator=generator,strength=strength,width=width,height=height,
                      guidance_scale=0,num_inference_steps=num_inference_steps,max_sequence_length=256)

        return output.images[0],mask_image,image,fit_width,fit_height

    if donut_mask:
        original_mask = mask
        mask = mask_to_donut(mask,donut_size)
    
    #output,mask_image,image_resized,fit_width,fit_height=image["background"],mask,image["background"],512,512
    output,mask_image,image_resized,fit_width,fit_height = process_inpaint(image["background"],mask,prompt,inpaint_model,strength,seed)
    
    if donut_mask:
        mask = original_mask.resize(mask_image.size)
        image_resized.paste(output,(0,0),mask.convert("L"))
        output = image_resized.resize((fit_width,fit_height),Image.LANCZOS)
        mask_image = mask.resize(output.size)
    else:
        output = output.resize((fit_width,fit_height),Image.LANCZOS)
        mask_image = mask_image.resize(output.size)

    return output,mask_image
    

def read_file(path: str) -> str:
    with open(path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content

css="""
#col-left {
    margin: 0 auto;
    max-width: 640px;
}
#col-right {
    margin: 0 auto;
    max-width: 640px;
}
.grid-container {
  display: flex;
  align-items: center;
  justify-content: center;
  gap:10px
}

.image {
  width: 128px; 
  height: 128px; 
  object-fit: cover; 
}

.text {
  font-size: 16px;
}
"""

with gr.Blocks(css=css, elem_id="demo-container") as demo:
    with gr.Column():
        gr.HTML(read_file("demo_header.html"))
        gr.HTML(read_file("demo_tools.html"))
    with gr.Row():
                with gr.Column():
                    image = gr.ImageEditor(height=800,sources=['upload','clipboard'],transforms=[],image_mode='RGB', layers=False,  elem_id="image_upload", type="pil", label="Upload",brush=gr.Brush(colors=["#fff"], color_mode="fixed"))
                    with gr.Row(elem_id="prompt-container",  equal_height=False):
                        prompt = gr.Textbox(label="Prompt",value="a person",placeholder="Your prompt (what you want in place of what is erased)", elem_id="prompt")
                    with gr.Row(equal_height=True):
                        donut_mask = gr.Checkbox(label="Donut Mask",value=False,info="Usually improve result,but slow.Do second example things")
                        donut_size = gr.Slider(label="Donut Size",minimum=1,maximum=64,step=1,value=32,info="Larger value make  extreamly slow")
                    btn = gr.Button("Inpaint", elem_id="run_button",variant="primary")
                    
                    image_mask = gr.Image(sources=['upload','clipboard'],  elem_id="mask_upload", type="pil", label="Mask_Upload",height=400, value=None)
                    with gr.Accordion(label="Advanced Settings", open=False):
                        with gr.Row( equal_height=True):
                            strength = gr.Number(value=0.75, minimum=0, maximum=1.0, step=0.01, label="Inpaint strength")
                            seed = gr.Number(value=0, minimum=0, step=1, label="Inpaint seed")
                        models = ["black-forest-labs/FLUX.1-schnell"]
                        inpaint_model = gr.Dropdown(label="modes", choices=models, value="black-forest-labs/FLUX.1-schnell") 
                        id_input=gr.Text(label="Name", visible=False)
                            
                with gr.Column():
                    image_out = gr.Image(height=800,sources=[],label="Output", elem_id="output-img",format="webp")
                    mask_out = gr.Image(height=800,sources=[],label="Mask", elem_id="mask-img",format="jpeg")

                    
            

    btn.click(fn=process_images, inputs=[image, image_mask,prompt,inpaint_model,strength,seed,donut_mask,donut_size], outputs =[image_out,mask_out], api_name='infer')
    gr.Examples(
               examples=[
                    ["examples/00538245.jpg", "examples/normal_mouth_mask.jpg","a beautiful girl,big-smile",0.75,"examples/normal_mouth_mask_result.jpg"],
                    ["examples/00538245.jpg", "examples/expand_mouth_mask.jpg","a beautiful girl,big-smile",0.75,"examples/expand_mouth_mask_result.jpg"],
                    ["examples/00547245_99.jpg", "examples/00547245_99_mask.jpg","a beautiful girl,eyes closed",0.75,"examples/00547245.jpg"],
                    ["examples/00207245_18.jpg", "examples/00207245_18_mask.jpg","a beautiful girl,mouth opened",0.2,"examples/00207245.jpg"]
                         ]
,
                #fn=example_out,
                inputs=[image,image_mask,prompt,strength,image_out],
                #outputs=[test_out],
                #cache_examples=False,
    )
    gr.HTML(
       gr.HTML(read_file("demo_footer.html"))
    )

    if __name__ == "__main__":
        demo.launch()