Spaces:
No application file
No application file
import gradio as gr | |
import joblib | |
from sklearn.feature_extraction.text import CountVectorizer | |
# Install the required libraries if you don't have them already | |
# !pip install gradio joblib scikit-learn | |
# Load the saved model and vectorizer | |
clf = joblib.load("./resturants.pkl",'rb') | |
vectorizer = joblib.load("./vectorizer.joblib") | |
# Define the prediction function | |
def predict_text(text): | |
# Vectorize the input text using the loaded vectorizer | |
text_vectorized = vectorizer.transform([text]) | |
# Make the prediction using the loaded model | |
predicted_output = clf.predict(text_vectorized) | |
# Return the predicted output (0 or 1) | |
return predicted_output[0] | |
# Create a Gradio interface | |
iface = gr.Interface( | |
fn=predict_text, | |
inputs="text", | |
outputs=["text"] | |
) | |
iface.launch() |