pixera / app.py
Alican Akca
For Version 2
b0c5c57
raw
history blame
2.51 kB
import cv2
import torch
import numpy as np
import gradio as gr
import paddlehub as hub
from PIL import Image
from methods.img2pixl import pixL
from examples.pixelArt.combine import combine
model = hub.Module(name='U2Net')
device = "cuda" if torch.cuda.is_available() else "cpu"
face2paint = torch.hub.load("bryandlee/animegan2-pytorch:main", "face2paint", device=device, size=512)
model = torch.hub.load("bryandlee/animegan2-pytorch", "generator", device=device).eval()
def GIF(fname,pixel_size):
gif = Image.open(fname)
frames = []
for i in range(gif.n_frames): #First Step: Splitting the GIF into frames
gif.seek(i)
frame = Image.new('RGB', gif.size)
frame.paste(gif)
frame = np.array(frame)
frames.append(frame)
result = pixL().toThePixL(frames, pixel_size)
for frame in result: #Second Step: Adding Cartoon Effect to each frame
frame = Image.fromarray(frame)
frame = cv2.cvtColor(np.asarray(face2paint(model, frame)), cv2.COLOR_BGR2RGB)
frames = []
for frame in result: #Third Step: Combining the frames into a GIF
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
frames.append(frame)
frames[0].save('cache.gif', append_images=frames, save_all=True, loop=1)
cache = Image.open('cache.gif')
return cache
def initilize(image,pixel_size,checkbox1):
if image.name.endswith('.gif'):
GIF(image.name,pixel_size)
else:
image = Image.open(image.name).convert("RGB")
image = cv2.cvtColor(np.asarray(face2paint(model, image)), cv2.COLOR_BGR2RGB)
if checkbox1:
result = model.Segmentation(
images=[image],
paths=None,
batch_size=1,
input_size=320,
output_dir='output',
visualization=True)
result = combine.combiner(images = pixL().toThePixL([result[0]['front'][:,:,::-1], result[0]['mask']],
pixel_size),
background_image = image)
else:
result = pixL().toThePixL([image], pixel_size)
return Image.fromarray(result)
inputs = ["file",
gr.Slider(4, 100, value=12, step = 2, label="Pixel Size"),
gr.Checkbox(label="Object-Oriented Inference", value=False)]
outputs = [gr.Image(type="pil",label="Front")]
gr.Interface(fn = initilize,
inputs = inputs,
outputs = outputs).launch()