|
from fastapi import FastAPI, Request, Query |
|
from fastapi.templating import Jinja2Templates |
|
from sentence_transformers import SentenceTransformer |
|
import faiss |
|
import numpy as np |
|
|
|
app = FastAPI() |
|
model = SentenceTransformer('paraphrase-MiniLM-L6-v2') |
|
index = faiss.IndexFlatL2(384) |
|
|
|
templates = Jinja2Templates(directory=".") |
|
|
|
@app.get("/") |
|
def read_root(request: Request): |
|
return templates.TemplateResponse("index.html", {"request": request}) |
|
|
|
@app.get("/embed") |
|
def embed_string(text: str): |
|
embedding = model.encode([text]) |
|
index.add(np.array(embedding)) |
|
return {"message": "String embedded and added to FAISS database"} |
|
|
|
@app.get("/search") |
|
def search_string(text: str, n: int = 5): |
|
embedding = model.encode([text]) |
|
distances, indices = index.search(np.array(embedding), n) |
|
return {"distances": distances[0].tolist(), "indices": indices[0].tolist()} |
|
|