AndreasLH's picture
upload repo
56bd2b5
# Copyright (c) Meta Platforms, Inc. and affiliates
import cv2
import numpy as np
import matplotlib.pyplot as plt
import os
import math
import torch
from copy import deepcopy
from pytorch3d.structures.meshes import join_meshes_as_scene
from pytorch3d.transforms.so3 import (
so3_relative_angle,
)
from matplotlib.path import Path
from cubercnn import util
def interp_color(dist, bounds=[0, 1], color_lo=(0,0, 250), color_hi=(0, 250, 250)):
percent = (dist - bounds[0]) / (bounds[1] - bounds[0])
b = color_lo[0] * (1 - percent) + color_hi[0] * percent
g = color_lo[1] * (1 - percent) + color_hi[1] * percent
r = color_lo[2] * (1 - percent) + color_hi[2] * percent
return (b, g, r)
def draw_bev(canvas_bev, z3d, l3d, w3d, x3d, ry3d, color=(0, 200, 200), scale=1, thickness=2):
w = l3d * scale
l = w3d * scale
x = x3d * scale
z = z3d * scale
r = ry3d*-1
corners1 = np.array([
[-w / 2, -l / 2, 1],
[+w / 2, -l / 2, 1],
[+w / 2, +l / 2, 1],
[-w / 2, +l / 2, 1]
])
ry = np.array([
[+math.cos(r), -math.sin(r), 0],
[+math.sin(r), math.cos(r), 0],
[0, 0, 1],
])
corners2 = ry.dot(corners1.T).T
corners2[:, 0] += w/2 + x + canvas_bev.shape[1] / 2
corners2[:, 1] += l/2 + z
draw_line(canvas_bev, corners2[0], corners2[1], color=color, thickness=thickness)
draw_line(canvas_bev, corners2[1], corners2[2], color=color, thickness=thickness)
draw_line(canvas_bev, corners2[2], corners2[3], color=color, thickness=thickness)
draw_line(canvas_bev, corners2[3], corners2[0], color=color, thickness=thickness)
def draw_line(im, v0, v1, color=(0, 200, 200), thickness=1):
cv2.line(im, (int(v0[0]), int(v0[1])), (int(v1[0]), int(v1[1])), color, thickness)
def create_colorbar(height, width, color_lo=(0,0, 250), color_hi=(0, 250, 250)):
im = np.zeros([height, width, 3])
for h in range(0, height):
color = interp_color(h + 0.5, [0, height], color_hi, color_lo)
im[h, :, 0] = (color[0])
im[h, :, 1] = (color[1])
im[h, :, 2] = (color[2])
return im.astype(np.uint8)
def visualize_from_instances(detections, dataset, dataset_name, min_size_test, output_folder, category_names_official, iteration='',visualize_every=50):
vis_folder = os.path.join(output_folder, 'vis')
util.mkdir_if_missing(vis_folder)
log_str = ''
xy_errors = []
z_errors = []
w3d_errors = []
h3d_errors = []
l3d_errors = []
dim_errors = []
ry_errors = []
n_cats = len(category_names_official)
thres = np.sqrt(1/n_cats)
for imind, im_obj in enumerate(detections):
write_sample = ((imind % visualize_every) == 0)
annos = dataset._dataset[imind]['annotations']
gt_boxes_2d = np.array([anno['bbox'] for anno in annos])
if len(gt_boxes_2d)==0:
continue
gt_boxes_2d[:, 2] += gt_boxes_2d[:, 0]
gt_boxes_2d[:, 3] += gt_boxes_2d[:, 1]
gt_boxes_cat = np.array([anno['category_id'] for anno in annos])
if write_sample:
data_obj = dataset[imind]
assert(data_obj['image_id'] == im_obj['image_id'])
im = util.imread(data_obj['file_name'])
K = np.array(im_obj['K'])
K_inv = np.linalg.inv(K)
sf = im_obj['height'] / min_size_test
for instance in im_obj['instances']:
cat = category_names_official[instance['category_id']]
score = instance['score']
x1, y1, w, h = instance['bbox']
x2 = x1 + w
y2 = y1 + h
alpha, h3d, w3d, l3d, x3d, y3d, z3d, ry3d = (-1,)*8
w3d, h3d, l3d = instance['dimensions']
# unproject
cen_2d = np.array(instance['center_2D'] + [1])
z3d = instance['center_cam'][2]
# get rotation (y-axis only)
ry3d = np.array(instance['pose'])
valid_gt_inds = np.flatnonzero(instance['category_id'] == gt_boxes_cat)
if len(valid_gt_inds) > 0:
quality_matrix = util.iou(np.array([[x1, y1, x2, y2]]), gt_boxes_2d[valid_gt_inds])
nearest_gt = quality_matrix.argmax(axis=1)[0]
nearest_gt_iou = quality_matrix.max(axis=1)[0]
valid_match = nearest_gt_iou >= 0.5
else:
valid_match = False
if valid_match:
gt_x1, gt_y1, gt_w, gt_h = annos[valid_gt_inds[nearest_gt]]['bbox']
gt_x3d, gt_y3d, gt_z3d = annos[valid_gt_inds[nearest_gt]]['center_cam']
gt_w3d, gt_h3d, gt_l3d = annos[valid_gt_inds[nearest_gt]]['dimensions']
gt_cen_2d = K @ np.array([gt_x3d, gt_y3d, gt_z3d])
gt_cen_2d /= gt_cen_2d[2]
gt_pose = annos[valid_gt_inds[nearest_gt]]['pose']
gt_ry3d = np.array(gt_pose)
if valid_match:
# compute errors
xy_errors.append(np.sqrt(((cen_2d[:2] - gt_cen_2d[:2])**2).sum()))
z_errors.append(np.abs(z3d - gt_z3d))
w3d_errors.append(np.abs(w3d - gt_w3d))
h3d_errors.append(np.abs(h3d - gt_h3d))
l3d_errors.append(np.abs(l3d - gt_l3d))
dim_errors.append(np.sqrt((w3d - gt_w3d)**2 + (h3d - gt_h3d)**2 + (l3d - gt_l3d)**2))
try:
ry_errors.append(so3_relative_angle(torch.from_numpy(ry3d).unsqueeze(0), torch.from_numpy(gt_ry3d).unsqueeze(0), cos_bound=1).item())
except:
pass
# unproject point to 3D
x3d, y3d, z3d = (K_inv @ (z3d*cen_2d))
# let us visualize the detections now
if write_sample and score > thres:
color = util.get_color(instance['category_id'])
draw_3d_box(im, K, [x3d, y3d, z3d, w3d, h3d, l3d], ry3d, color=color, thickness=int(np.round(3*im.shape[0]/500)), draw_back=False)
draw_text(im, '{}, z={:.1f}, s={:.2f}'.format(cat, z3d, score), [x1, y1, w, h], scale=0.50*im.shape[0]/500, bg_color=color)
if write_sample:
util.imwrite(im, os.path.join(vis_folder, '{:06d}.jpg'.format(imind)))
# safety in case all rotation matrices failed.
if len(ry_errors) == 0:
ry_errors = [1000, 1000]
log_str += dataset_name + 'iter={}, xy({:.2f}), z({:.2f}), whl({:.2f}, {:.2f}, {:.2f}), ry({:.2f})\n'.format(
iteration,
np.mean(xy_errors), np.mean(z_errors),
np.mean(w3d_errors), np.mean(h3d_errors), np.mean(l3d_errors),
np.mean(ry_errors),
)
return log_str
def imshow(im, fig_num=None):
if fig_num is not None: plt.figure(fig_num)
if len(im.shape) == 2:
im = np.tile(im, [3, 1, 1]).transpose([1, 2, 0])
plt.imshow(cv2.cvtColor(im.astype(np.uint8), cv2.COLOR_RGB2BGR))
plt.show()
def draw_scene_view(im, K, meshes, text=None, scale=1000, R=None, T=None, zoom_factor=1.0, mode='front_and_novel', blend_weight=0.80, blend_weight_overlay=1.0, ground_bounds=None, canvas=None, zplane=0.05, colors=None):
"""
Draws a scene from multiple different modes.
Args:
im (array): the image to draw onto
K (array): the 3x3 matrix for projection to camera to screen
meshes ([Mesh]): a list of meshes to draw into the scene
text ([str]): optional strings to draw per mesh
scale (int): the size of the square novel view canvas (pixels)
R (array): a single 3x3 matrix defining the novel view
T (array): a 3x vector defining the position of the novel view
zoom_factor (float): an optional amount to zoom out (>1) or in (<1)
mode (str): supports ['2D_only', 'front', 'novel', 'front_and_novel'] where
front implies the front-facing camera view and novel is based on R,T
blend_weight (float): blend factor for box edges over the RGB
blend_weight_overlay (float): blends the RGB image with the rendered meshes
ground_bounds (tuple): max_y3d, x3d_start, x3d_end, z3d_start, z3d_end for the Ground floor or
None to let the renderer to estimate the ground bounds in the novel view itself.
canvas (array): if the canvas doesn't change it can be faster to re-use it. Optional.
zplane (float): a plane of depth to solve intersection when
vertex points project behind the camera plane.
"""
if R is None:
R = util.euler2mat([np.pi/3, 0, 0])
if mode == '2D_only':
im_drawn_rgb = deepcopy(im)
# go in order of reverse depth
for mesh_idx in reversed(np.argsort([mesh.verts_padded().cpu().mean(1)[0, 1] for mesh in meshes])):
mesh = meshes[mesh_idx]
verts3D = mesh.verts_padded()[0].numpy()
verts2D = (K @ verts3D.T) / verts3D[:, -1]
color = [min(255, c*255*1.25) for c in mesh.textures.verts_features_padded()[0,0].tolist()]
x1 = verts2D[0, :].min()
y1 = verts2D[1, :].min()
x2 = verts2D[0, :].max()
y2 = verts2D[1, :].max()
draw_2d_box(im_drawn_rgb, [x1, y1, x2-x1, y2-y1], color=color, thickness=max(2, int(np.round(3*im_drawn_rgb.shape[0]/1250))))
if text is not None:
draw_text(im_drawn_rgb, '{}'.format(text[mesh_idx]), [x1, y1], scale=0.50*im_drawn_rgb.shape[0]/500, bg_color=color)
return im_drawn_rgb
else:
meshes_scene = join_meshes_as_scene(meshes)
if torch.cuda.is_available():
meshes_scene = meshes_scene.cuda()
device = meshes_scene.device
meshes_scene.textures = meshes_scene.textures.to(device)
cameras = util.get_camera(K, im.shape[1], im.shape[0]).to(device)
renderer = util.get_basic_renderer(cameras, im.shape[1], im.shape[0], use_color=True).to(device)
if mode in ['front_and_novel', 'front']:
'''
Render full scene from image view
'''
im_drawn_rgb = deepcopy(im)
# save memory if not blending the render
if blend_weight > 0:
rendered_img, _ = renderer(meshes_scene)
sil_mask = rendered_img[0, :, :, 3].cpu().numpy() > 0.1
rendered_img = (rendered_img[0, :, :, :3].cpu().numpy() * 255).astype(np.uint8)
im_drawn_rgb[sil_mask] = rendered_img[sil_mask] * blend_weight + im_drawn_rgb[sil_mask] * (1 - blend_weight)
'''
Draw edges for image view
'''
# go in order of reverse depth
for mesh_idx in reversed(np.argsort([mesh.verts_padded().cpu().mean(1)[0, 1] for mesh in meshes])):
mesh = meshes[mesh_idx]
verts3D = mesh.verts_padded()[0].cpu().numpy()
verts2D = (K @ verts3D.T) / verts3D[:, -1]
if colors is not None:
color = np.minimum(colors[mesh_idx][:-1] * 255 * 1.25, np.ones_like(colors[mesh_idx][:-1])*255).tolist()
else:
color = [min(255, c*255*1.25) for c in mesh.textures.verts_features_padded()[0,0].tolist()]
draw_3d_box_from_verts(
im_drawn_rgb, K, verts3D, color=color,
thickness=max(2, int(np.round(3*im_drawn_rgb.shape[0]/1250))),
draw_back=False, draw_top=False, zplane=zplane
)
x1 = verts2D[0, :].min() #min(verts2D[0, (verts2D[0, :] > 0) & (verts2D[0, :] < im_drawn_rgb.shape[1])])
y1 = verts2D[1, :].min() #min(verts2D[1, (verts2D[1, :] > 0) & (verts2D[1, :] < im_drawn_rgb.shape[0])])
if text is not None:
draw_text(im_drawn_rgb, '{}'.format(text[mesh_idx]), [x1, y1], scale=0.50*im_drawn_rgb.shape[0]/500, bg_color=color)
if blend_weight_overlay < 1.0 and blend_weight_overlay > 0.0:
im_drawn_rgb = im_drawn_rgb * blend_weight_overlay + deepcopy(im) * (1 - blend_weight_overlay)
if mode == 'front':
return im_drawn_rgb
elif mode in ['front_and_novel', 'novel']:
'''
Render from a new view
'''
has_canvas_already = canvas is not None
if not has_canvas_already:
canvas = np.ones((scale, scale, 3))
view_R = torch.from_numpy(R).float().to(device)
if T is None:
center = (meshes_scene.verts_padded().min(1).values + meshes_scene.verts_padded().max(1).values).unsqueeze(0)/2
else:
center = torch.from_numpy(T).float().to(device).view(1, 1, 3)
verts_rotated = meshes_scene.verts_padded().clone()
verts_rotated -= center
verts_rotated = (view_R @ verts_rotated[0].T).T.unsqueeze(0)
K_novelview = deepcopy(K)
K_novelview[0, -1] *= scale / im.shape[1]
K_novelview[1, -1] *= scale / im.shape[0]
cameras = util.get_camera(K_novelview, scale, scale).to(device)
renderer = util.get_basic_renderer(cameras, scale, scale, use_color=True).to(device)
margin = 0.01
if T is None:
max_trials = 10000
zoom_factor = 100.0
zoom_factor_in = zoom_factor
while max_trials:
zoom_factor_in = zoom_factor_in*0.95
verts = verts_rotated.clone()
verts[:, :, -1] += center[:, :, -1]*zoom_factor_in
verts_np = verts.cpu().numpy()
proj = ((K_novelview @ verts_np[0].T) / verts_np[:, :, -1])
# some vertices are extremely close or negative...
# this implies we have zoomed in too much
if (verts[0, :, -1] < 0.25).any():
break
# left or above image
elif (proj[:2, :] < scale*margin).any():
break
# right or below borders
elif (proj[:2, :] > scale*(1 - margin)).any():
break
# everything is in view.
zoom_factor = zoom_factor_in
max_trials -= 1
zoom_out_bias = center[:, :, -1].item()
else:
zoom_out_bias = 1.0
verts_rotated[:, :, -1] += zoom_out_bias*zoom_factor
meshes_novel_view = meshes_scene.clone().update_padded(verts_rotated)
rendered_img, _ = renderer(meshes_novel_view)
im_novel_view = (rendered_img[0, :, :, :3].cpu().numpy() * 255).astype(np.uint8)
sil_mask = rendered_img[0, :, :, 3].cpu().numpy() > 0.1
center_np = center.cpu().numpy()
view_R_np = view_R.cpu().numpy()
if not has_canvas_already:
if ground_bounds is None:
min_x3d, _, min_z3d = meshes_scene.verts_padded().min(1).values[0, :].tolist()
max_x3d, max_y3d, max_z3d = meshes_scene.verts_padded().max(1).values[0, :].tolist()
# go for grid projection, but with extremely bad guess at bounds
x3d_start = np.round(min_x3d - (max_x3d - min_x3d)*50)
x3d_end = np.round(max_x3d + (max_x3d - min_x3d)*50)
z3d_start = np.round(min_z3d - (max_z3d - min_z3d)*50)
z3d_end = np.round(max_z3d + (max_z3d - min_z3d)*50)
grid_xs = np.arange(x3d_start, x3d_end)
grid_zs = np.arange(z3d_start, z3d_end)
xs_mesh, zs_mesh = np.meshgrid(grid_xs, grid_zs)
ys_mesh = np.ones_like(xs_mesh)*max_y3d
point_mesh = np.concatenate((xs_mesh[:, :, np.newaxis], ys_mesh[:, :, np.newaxis], zs_mesh[:, :, np.newaxis]), axis=2)
point_mesh_orig = deepcopy(point_mesh)
mesh_shape = point_mesh.shape
point_mesh = view_R_np @ (point_mesh - center_np).transpose(2, 0, 1).reshape(3, -1)
point_mesh[-1] += zoom_out_bias*zoom_factor
point_mesh[-1, :] = point_mesh[-1, :].clip(0.25)
point_mesh_2D = (K_novelview @ point_mesh) / point_mesh[-1]
point_mesh_2D[-1] = point_mesh[-1]
point_mesh = point_mesh.reshape(3, mesh_shape[0], mesh_shape[1]).transpose(1, 2, 0)
point_mesh_2D = point_mesh_2D.reshape(3, mesh_shape[0], mesh_shape[1]).transpose(1, 2, 0)
maskx = (point_mesh_2D[:, :, 0].T >= -50) & (point_mesh_2D[:, :, 0].T < scale+50) & (point_mesh_2D[:, :, 2].T > 0)
maskz = (point_mesh_2D[:, :, 1].T >= -50) & (point_mesh_2D[:, :, 1].T < scale+50) & (point_mesh_2D[:, :, 2].T > 0)
# invalid scene?
if (not maskz.any()) or (not maskx.any()):
return im, im, canvas
# go for grid projection again!! but with sensible bounds
x3d_start = np.round(point_mesh[:, :, 0].T[maskx].min() - 10)
x3d_end = np.round(point_mesh[:, :, 0].T[maskx].max() + 10)
z3d_start = np.round(point_mesh_orig[:, :, 2].T[maskz].min() - 10)
z3d_end = np.round(point_mesh_orig[:, :, 2].T[maskz].max() + 10)
else:
max_y3d, x3d_start, x3d_end, z3d_start, z3d_end = ground_bounds
grid_xs = np.arange(x3d_start, x3d_end)
grid_zs = np.arange(z3d_start, z3d_end)
xs_mesh, zs_mesh = np.meshgrid(grid_xs, grid_zs)
ys_mesh = np.ones_like(xs_mesh)*max_y3d
point_mesh = np.concatenate((xs_mesh[:, :, np.newaxis], ys_mesh[:, :, np.newaxis], zs_mesh[:, :, np.newaxis]), axis=2)
mesh_shape = point_mesh.shape
point_mesh = view_R_np @ (point_mesh - center_np).transpose(2, 0, 1).reshape(3, -1)
point_mesh[-1] += zoom_out_bias*zoom_factor
point_mesh[-1, :] = point_mesh[-1, :].clip(0.25)
point_mesh_2D = (K_novelview @ point_mesh) / point_mesh[-1]
point_mesh_2D[-1] = point_mesh[-1]
point_mesh = point_mesh.reshape(3, mesh_shape[0], mesh_shape[1]).transpose(1, 2, 0)
point_mesh_2D = point_mesh_2D.reshape(3, mesh_shape[0], mesh_shape[1]).transpose(1, 2, 0)
bg_color = (225,)*3
line_color = (175,)*3
canvas[:, :, 0] = bg_color[0]
canvas[:, :, 1] = bg_color[1]
canvas[:, :, 2] = bg_color[2]
lines_to_draw = set()
for grid_row_idx in range(1, len(grid_zs)):
pre_z = grid_zs[grid_row_idx-1]
cur_z = grid_zs[grid_row_idx]
for grid_col_idx in range(1, len(grid_xs)):
pre_x = grid_xs[grid_col_idx-1]
cur_x = grid_xs[grid_col_idx]
p1 = point_mesh_2D[grid_row_idx-1, grid_col_idx-1]
valid1 = p1[-1] > 0
p2 = point_mesh_2D[grid_row_idx-1, grid_col_idx]
valid2 = p2[-1] > 0
if valid1 and valid2:
line = (tuple(p1[:2].astype(int).tolist()), tuple(p2[:2].astype(int).tolist()))
lines_to_draw.add(line)
# draw vertical line from the previous row
p1 = point_mesh_2D[grid_row_idx-1, grid_col_idx-1]
valid1 = p1[-1] > 0
p2 = point_mesh_2D[grid_row_idx, grid_col_idx-1]
valid2 = p2[-1] > 0
if valid1 and valid2:
line = (tuple(p1[:2].astype(int).tolist()), tuple(p2[:2].astype(int).tolist()))
lines_to_draw.add(line)
for line in lines_to_draw:
draw_line(canvas, line[0], line[1], color=line_color, thickness=max(1, int(np.round(3*scale/1250))))
im_novel_view[~sil_mask] = canvas[~sil_mask]
'''
Draw edges for novel view
'''
# apply novel view to meshes
meshes_novel = []
for mesh in meshes:
mesh_novel = mesh.clone().to(device)
verts_rotated = mesh_novel.verts_padded()
verts_rotated -= center
verts_rotated = (view_R @ verts_rotated[0].T).T.unsqueeze(0)
verts_rotated[:, :, -1] += zoom_out_bias*zoom_factor
mesh_novel = mesh_novel.update_padded(verts_rotated)
meshes_novel.append(mesh_novel)
# go in order of reverse depth
for mesh_idx in reversed(np.argsort([mesh.verts_padded().cpu().mean(1)[0, 1] for mesh in meshes_novel])):
mesh = meshes_novel[mesh_idx]
verts3D = mesh.verts_padded()[0].cpu().numpy()
verts2D = (K_novelview @ verts3D.T) / verts3D[:, -1]
if colors is not None:
color = np.minimum(colors[mesh_idx][:-1] * 255 * 1.25, np.ones_like(colors[mesh_idx][:-1])*255).tolist() # colors[mesh_idx][:-1] * 255 * 1.25
else:
color = [min(255, c*255*1.25) for c in mesh.textures.verts_features_padded()[0,0].tolist()]
draw_3d_box_from_verts(
im_novel_view, K_novelview, verts3D, color=color,
thickness=max(2, int(np.round(3*im_novel_view.shape[0]/1250))),
draw_back=False, draw_top=False, zplane=zplane
)
x1 = verts2D[0, :].min()
y1 = verts2D[1, :].min()
if text is not None:
draw_text(im_novel_view, '{}'.format(text[mesh_idx]), [x1, y1], scale=0.50*im_novel_view.shape[0]/500, bg_color=color)
if mode == 'front_and_novel':
return im_drawn_rgb, im_novel_view, canvas
else:
return im_novel_view, canvas
else:
raise ValueError('No visualization written for {}'.format(mode))
def get_polygon_grid(im, poly_verts):
nx = im.shape[1]
ny = im.shape[0]
x, y = np.meshgrid(np.arange(nx), np.arange(ny))
x, y = x.flatten(), y.flatten()
points = np.vstack((x, y)).T
path = Path(poly_verts)
grid = path.contains_points(points)
grid = grid.reshape((ny, nx))
return grid
def draw_circle(im, pos, radius=5, thickness=1, color=(250, 100, 100), fill=True):
if fill: thickness = -1
cv2.circle(im, (int(pos[0]), int(pos[1])), radius, color=color, thickness=thickness)
def draw_transparent_polygon(im, verts, blend=0.5, color=(0, 255, 255)):
mask = get_polygon_grid(im, verts[:4, :])
im[mask, 0] = im[mask, 0] * blend + (1 - blend) * color[0]
im[mask, 1] = im[mask, 1] * blend + (1 - blend) * color[1]
im[mask, 2] = im[mask, 2] * blend + (1 - blend) * color[2]
def draw_3d_box_from_verts(im, K, verts3d, color=(0, 200, 200), thickness=1, draw_back=False, draw_top=False, zplane=0.05, eps=1e-4):
"""
Draws a scene from multiple different modes.
Args:
im (array): the image to draw onto
K (array): the 3x3 matrix for projection to camera to screen
verts3d (array): the 8x3 matrix of vertices in camera space
color (tuple): color in RGB scaled [0, 255)
thickness (float): the line thickness for opencv lines
draw_back (bool): whether a backface should be highlighted
draw_top (bool): whether the top face should be highlighted
zplane (float): a plane of depth to solve intersection when
vertex points project behind the camera plane.
"""
if isinstance(K, torch.Tensor):
K = K.detach().cpu().numpy()
if isinstance(verts3d, torch.Tensor):
verts3d = verts3d.detach().cpu().numpy()
# reorder
bb3d_lines_verts = [[0, 1], [1, 2], [2, 3], [3, 0], [1, 5], [5, 6], [6, 2], [4, 5], [4, 7], [6, 7], [0, 4], [3, 7]]
# define back and top vetice planes
back_idxs = [4, 0, 3, 7]
top_idxs = [4, 0, 1, 5]
for (i, j) in bb3d_lines_verts:
v0 = verts3d[i]
v1 = verts3d[j]
z0, z1 = v0[-1], v1[-1]
if (z0 >= zplane or z1 >= zplane):
# computer intersection of v0, v1 and zplane
s = (zplane - z0) / max((z1 - z0), eps)
new_v = v0 + s * (v1 - v0)
if (z0 < zplane) and (z1 >= zplane):
# i0 vertex is behind the plane
v0 = new_v
elif (z0 >= zplane) and (z1 < zplane):
# i1 vertex is behind the plane
v1 = new_v
v0_proj = (K @ v0)/max(v0[-1], eps)
v1_proj = (K @ v1)/max(v1[-1], eps)
# project vertices
cv2.line(im,
(int(v0_proj[0]), int(v0_proj[1])),
(int(v1_proj[0]), int(v1_proj[1])),
color, thickness
)
# dont draw the planes if a vertex is out of bounds
draw_back &= np.all(verts3d[back_idxs, -1] >= zplane)
draw_top &= np.all(verts3d[top_idxs, -1] >= zplane)
if draw_back or draw_top:
# project to image
verts2d = (K @ verts3d.T).T
verts2d /= verts2d[:, -1][:, np.newaxis]
if type(verts2d) == torch.Tensor:
verts2d = verts2d.detach().cpu().numpy()
if draw_back:
draw_transparent_polygon(im, verts2d[back_idxs, :2], blend=0.5, color=color)
if draw_top:
draw_transparent_polygon(im, verts2d[top_idxs, :2], blend=0.5, color=color)
def draw_3d_box(im, K, box3d, R, color=(0, 200, 200), thickness=1, draw_back=False, draw_top=False, view_R=None, view_T=None):
verts2d, verts3d = util.get_cuboid_verts(K, box3d, R, view_R=view_R, view_T=view_T)
draw_3d_box_from_verts(im, K, verts3d, color=color, thickness=thickness, draw_back=draw_back, draw_top=draw_top)
def draw_text(im, text, pos, scale=0.4, color='auto', font=cv2.FONT_HERSHEY_SIMPLEX, bg_color=(0, 255, 255),
blend=0.33, lineType=1):
text = str(text)
pos = [int(pos[0]), int(pos[1])]
if color == 'auto':
if bg_color is not None:
color = (0, 0, 0) if ((bg_color[0] + bg_color[1] + bg_color[2])/3) > 127.5 else (255, 255, 255)
else:
color = (0, 0, 0)
if bg_color is not None:
text_size, _ = cv2.getTextSize(text, font, scale, lineType)
x_s = int(np.clip(pos[0], a_min=0, a_max=im.shape[1]))
x_e = int(np.clip(x_s + text_size[0] - 1 + 4, a_min=0, a_max=im.shape[1]))
y_s = int(np.clip(pos[1] - text_size[1] - 2, a_min=0, a_max=im.shape[0]))
y_e = int(np.clip(pos[1] + 1 - 2, a_min=0, a_max=im.shape[0]))
im[y_s:y_e + 1, x_s:x_e + 1, 0] = im[y_s:y_e + 1, x_s:x_e + 1, 0]*blend + bg_color[0] * (1 - blend)
im[y_s:y_e + 1, x_s:x_e + 1, 1] = im[y_s:y_e + 1, x_s:x_e + 1, 1]*blend + bg_color[1] * (1 - blend)
im[y_s:y_e + 1, x_s:x_e + 1, 2] = im[y_s:y_e + 1, x_s:x_e + 1, 2]*blend + bg_color[2] * (1 - blend)
pos[0] = int(np.clip(pos[0] + 2, a_min=0, a_max=im.shape[1]))
pos[1] = int(np.clip(pos[1] - 2, a_min=0, a_max=im.shape[0]))
cv2.putText(im, text, tuple(pos), font, scale, color, lineType)
def draw_transparent_square(im, pos, alpha=1, radius=5, color=(250, 100, 100)):
l = pos[1] - radius
r = pos[1] + radius
t = pos[0] - radius
b = pos[0] + radius
if (np.array([l, r, t, b]) >= 0).any():
l = np.clip(np.floor(l), 0, im.shape[0]).astype(int)
r = np.clip(np.floor(r), 0, im.shape[0]).astype(int)
t = np.clip(np.floor(t), 0, im.shape[1]).astype(int)
b = np.clip(np.floor(b), 0, im.shape[1]).astype(int)
# blend
im[l:r + 1, t:b + 1, 0] = im[l:r + 1, t:b + 1, 0] * alpha + color[0] * (1 - alpha)
im[l:r + 1, t:b + 1, 1] = im[l:r + 1, t:b + 1, 1] * alpha + color[1] * (1 - alpha)
im[l:r + 1, t:b + 1, 2] = im[l:r + 1, t:b + 1, 2] * alpha + color[2] * (1 - alpha)
def draw_2d_box(im, box, color=(0, 200, 200), thickness=1):
x = box[0]
y = box[1]
w = box[2]
h = box[3]
x2 = (x + w) - 1
y2 = (y + h) - 1
cv2.rectangle(im, (int(x), int(y)), (int(x2), int(y2)), color, thickness)
def imhstack(im1, im2):
sf = im1.shape[0] / im2.shape[0]
if sf > 1:
im2 = cv2.resize(im2, (int(im2.shape[1] / sf), im1.shape[0]))
elif sf < 1:
im1 = cv2.resize(im1, (int(im1.shape[1] / sf), im2.shape[0]))
im_concat = np.hstack((im1, im2))
return im_concat
def imvstack(im1, im2):
sf = im1.shape[1] / im2.shape[1]
if sf > 1:
im2 = cv2.resize(im2, (int(im2.shape[0] / sf), im1.shape[1]))
elif sf < 1:
im1 = cv2.resize(im1, (int(im1.shape[0] / sf), im2.shape[1]))
im_concat = np.vstack((im1, im2))
return im_concat