Spaces:
Runtime error
Runtime error
metadata
title: Prompt Search Engine
emoji: 🐠
colorFrom: pink
colorTo: purple
sdk: docker
pinned: false
short_description: Improve image quality with better prompts!
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
Prompt Search Engine
Overview
This project implements a prompt search engine for Stable Diffusion models. The search engine allows users to input a prompt and returns the top n
most similar prompts from a corpus of existing prompts. This helps in generating higher quality images by providing more effective prompts.
The search engine consists of two main components:
- Prompt Vectorizer: Converts prompts into numerical vectors using a pre-trained embedding model.
- Similarity Scorer: Measures the similarity between the input prompt and existing prompts using cosine similarity.
Setup Instructions
Requirements
- Python >= 3.9
- pip
Installation
Clone the repository
git clone <repository-url> cd <repository-directory>
Create a virtual environment (optional)
python -m venv venv source venv/bin/activate
Install dependencies
pip install -r requirements.txt
Running the run.py
script
The run.py
script allows you to run the prompt search engine from the command line.
Usage
python run.py --query "Your query prompt here" --n 5 --model "all-MiniLM-L6-v2"
Arguments
--query
: The query prompt (required).--n
: The number of similar prompts to return (default 5).--model
: The name of the SBERT model to use (default "all-MiniLM-L6-v2").
Example
python run.py --query "A cat wearing glasses, sitting at a computer" --n 7