Anja97's picture
Initial commit with cleaned project files
adad4ac
|
raw
history blame
1.77 kB
metadata
title: Prompt Search Engine
emoji: 🐠
colorFrom: pink
colorTo: purple
sdk: docker
pinned: false
short_description: Improve image quality with better prompts!

Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference

Prompt Search Engine

Overview

This project implements a prompt search engine for Stable Diffusion models. The search engine allows users to input a prompt and returns the top n most similar prompts from a corpus of existing prompts. This helps in generating higher quality images by providing more effective prompts.

The search engine consists of two main components:

  • Prompt Vectorizer: Converts prompts into numerical vectors using a pre-trained embedding model.
  • Similarity Scorer: Measures the similarity between the input prompt and existing prompts using cosine similarity.

Setup Instructions

Requirements

  • Python >= 3.9
  • pip

Installation

  1. Clone the repository

    git clone <repository-url>
    cd <repository-directory>
    
  2. Create a virtual environment (optional)

    python -m venv venv
    source venv/bin/activate
    
  3. Install dependencies

    pip install -r requirements.txt
    

Running the run.py script

The run.py script allows you to run the prompt search engine from the command line.

Usage

python run.py --query "Your query prompt here" --n 5 --model "all-MiniLM-L6-v2"

Arguments

  • --query: The query prompt (required).
  • --n: The number of similar prompts to return (default 5).
  • --model: The name of the SBERT model to use (default "all-MiniLM-L6-v2").

Example

python run.py --query "A cat wearing glasses, sitting at a computer" --n 7