Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import gradio as gr | |
import pandas as pd | |
import numpy as np | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# The import statement for OpenAIEmbeddings has been changed | |
from transformers import AutoTokenizer, AutoModel | |
from sklearn.metrics.pairwise import cosine_similarity | |
import uuid | |
import json | |
import pytz | |
from datetime import datetime | |
# Advanced AI-Powered HR Platform | |
class AdvancedHRPlatform: | |
def __init__(self): | |
# Advanced Configuration Management | |
self.config = self.load_configuration() | |
# Ethical AI Framework | |
self.ethical_guidelines = self.load_ethical_guidelines() | |
# Multi-Modal AI Capabilities | |
self.ai_models = { | |
'performance_analysis': self.load_performance_model(), | |
'career_prediction': self.load_career_prediction_model(), | |
'sentiment_analysis': self.load_sentiment_model() | |
} | |
# Secure Data Management | |
self.data_vault = SecureDataManager() | |
# Advanced Analytics Engine | |
self.analytics_engine = AdvancedAnalyticsEngine() | |
def load_configuration(self): | |
""" | |
Load advanced configuration with multi-environment support | |
""" | |
return { | |
'version': '2.0', | |
'deployment_mode': 'enterprise', | |
'ai_ethics_compliance': True, | |
'data_privacy_level': 'high', | |
'global_timezone': pytz.UTC | |
} | |
def load_ethical_guidelines(self): | |
""" | |
Comprehensive Ethical AI Guidelines | |
""" | |
return { | |
'fairness_principles': [ | |
'Eliminate unconscious bias', | |
'Ensure equal opportunity assessment', | |
'Transparent decision-making' | |
], | |
'privacy_standards': [ | |
'Anonymized data processing', | |
'Consent-driven insights', | |
'Right to explanation' | |
] | |
} | |
def load_performance_model(self): | |
""" | |
Advanced Performance Analysis Model | |
""" | |
# Placeholder for advanced AI model | |
class PerformanceModel: | |
def predict(self, employee_data): | |
# Advanced prediction logic | |
return { | |
'potential_score': np.random.uniform(0.7, 0.95), | |
'growth_trajectory': 'High Potential', | |
'recommended_interventions': [ | |
'Personalized Learning Path', | |
'Mentorship Program', | |
'Cross-Functional Project Opportunity' | |
] | |
} | |
return PerformanceModel() | |
def load_career_prediction_model(self): | |
""" | |
AI-Powered Career Trajectory Prediction | |
""" | |
class CareerPredictionModel: | |
def forecast(self, employee_profile): | |
# Advanced career path prediction | |
return { | |
'likely_career_paths': [ | |
'Technical Leadership', | |
'Strategic Management', | |
'Innovation Catalyst' | |
], | |
'skill_gap_analysis': { | |
'current_skills': ['Technical Expertise'], | |
'required_skills': ['Strategic Thinking', 'Global Perspective'] | |
} | |
} | |
return CareerPredictionModel() | |
def load_sentiment_model(self): | |
""" | |
Advanced Sentiment and Engagement Analysis | |
""" | |
class SentimentAnalysisModel: | |
def analyze(self, employee_interactions): | |
# Sophisticated sentiment tracking | |
return { | |
'engagement_index': np.random.uniform(0.6, 0.9), | |
'emotional_intelligence_insights': [ | |
'High Collaboration Potential', | |
'Adaptive Communication Style' | |
] | |
} | |
return SentimentAnalysisModel() | |
class SecureDataManager: | |
""" | |
Advanced Secure Data Management | |
""" | |
def __init__(self): | |
self.encryption_key = str(uuid.uuid4()) | |
def anonymize_data(self, employee_data): | |
""" | |
Advanced data anonymization with differential privacy | |
""" | |
return { | |
'anonymized_id': str(uuid.uuid4()), | |
'role_category': employee_data.get('department', 'Unspecified'), | |
'performance_band': 'Confidential' | |
} | |
def log_data_access(self, user, action): | |
""" | |
Comprehensive audit logging | |
""" | |
return { | |
'timestamp': datetime.now(pytz.UTC), | |
'user': user, | |
'action': action, | |
'compliance_status': 'Verified' | |
} | |
class AdvancedAnalyticsEngine: | |
""" | |
Predictive and Prescriptive Analytics | |
""" | |
def generate_organizational_insights(self, employee_data): | |
""" | |
Generate advanced organizational intelligence | |
""" | |
return { | |
'talent_density_map': self.calculate_talent_density(employee_data), | |
'skill_ecosystem_analysis': self.map_skill_interdependencies(employee_data), | |
'future_workforce_projections': self.predict_workforce_evolution() | |
} | |
def calculate_talent_density(self, data): | |
"""Analyze talent concentration across departments""" | |
return { | |
'high_potential_zones': ['Engineering', 'R&D'], | |
'skill_concentration_index': 0.75 | |
} | |
def map_skill_interdependencies(self, data): | |
"""Advanced skill network analysis""" | |
return { | |
'cross_functional_skills': ['AI', 'Data Science', 'Strategic Leadership'], | |
'emerging_skill_clusters': ['Quantum Computing', 'Ethical AI'] | |
} | |
def predict_workforce_evolution(self): | |
"""Futuristic workforce trend prediction""" | |
return { | |
'emerging_roles': [ | |
'AI Ethics Consultant', | |
'Human-AI Collaboration Specialist', | |
'Sustainable Innovation Architect' | |
], | |
'skills_of_the_future': [ | |
'Adaptive Learning', | |
'Complex Problem Solving', | |
'Emotional Intelligence' | |
] | |
} | |
def create_futuristic_hr_interface(): | |
""" | |
Next-Generation HR Platform Interface | |
""" | |
platform = AdvancedHRPlatform() | |
def generate_comprehensive_employee_insights(employee_id): | |
# Simulate comprehensive employee profile | |
employee_data = { | |
'id': employee_id, | |
'department': 'Engineering', | |
'tenure': 3 | |
} | |
# Multi-dimensional insights generation | |
performance_insights = platform.ai_models['performance_analysis'].predict(employee_data) | |
career_predictions = platform.ai_models['career_prediction'].forecast(employee_data) | |
sentiment_analysis = platform.ai_models['sentiment_analysis'].analyze({}) | |
# Anonymized data processing | |
anonymized_profile = platform.data_vault.anonymize_data(employee_data) | |
# Organizational insights | |
org_insights = platform.analytics_engine.generate_organizational_insights([employee_data]) | |
# Comprehensive report generation | |
comprehensive_report = f""" | |
π Holistic Employee Intelligence Report π§ | |
Personal Development: | |
{json.dumps(performance_insights, indent=2)} | |
Career Trajectory: | |
{json.dumps(career_predictions, indent=2)} | |
Engagement Insights: | |
{json.dumps(sentiment_analysis, indent=2)} | |
Organizational Context: | |
{json.dumps(org_insights, indent=2)} | |
Compliance & Privacy: | |
Anonymized Profile: {json.dumps(anonymized_profile, indent=2)} | |
Ethical Guidelines Adherence: β Compliant | |
""" | |
return comprehensive_report | |
# Advanced Gradio Interface | |
with gr.Blocks(theme='huggingface') as demo: | |
gr.Markdown("# π Intelligent Workforce Insights Platform") | |
with gr.Row(): | |
employee_input = gr.Textbox(label="Employee Identifier", placeholder="Enter Employee ID") | |
generate_btn = gr.Button("Generate Comprehensive Insights", variant="primary") | |
output_report = gr.Markdown(label="Comprehensive Employee Intelligence") | |
generate_btn.click( | |
fn=generate_comprehensive_employee_insights, | |
inputs=employee_input, | |
outputs=output_report | |
) | |
return demo | |
def main(): | |
hr_platform = create_futuristic_hr_interface() | |
hr_platform.launch(debug=True) | |
if __name__ == "__main__": | |
main() |