workforce360 / app.py
Anupam251272's picture
Update app.py
881e808 verified
import os
import torch
import gradio as gr
import pandas as pd
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
# The import statement for OpenAIEmbeddings has been changed
from transformers import AutoTokenizer, AutoModel
from sklearn.metrics.pairwise import cosine_similarity
import uuid
import json
import pytz
from datetime import datetime
# Advanced AI-Powered HR Platform
class AdvancedHRPlatform:
def __init__(self):
# Advanced Configuration Management
self.config = self.load_configuration()
# Ethical AI Framework
self.ethical_guidelines = self.load_ethical_guidelines()
# Multi-Modal AI Capabilities
self.ai_models = {
'performance_analysis': self.load_performance_model(),
'career_prediction': self.load_career_prediction_model(),
'sentiment_analysis': self.load_sentiment_model()
}
# Secure Data Management
self.data_vault = SecureDataManager()
# Advanced Analytics Engine
self.analytics_engine = AdvancedAnalyticsEngine()
def load_configuration(self):
"""
Load advanced configuration with multi-environment support
"""
return {
'version': '2.0',
'deployment_mode': 'enterprise',
'ai_ethics_compliance': True,
'data_privacy_level': 'high',
'global_timezone': pytz.UTC
}
def load_ethical_guidelines(self):
"""
Comprehensive Ethical AI Guidelines
"""
return {
'fairness_principles': [
'Eliminate unconscious bias',
'Ensure equal opportunity assessment',
'Transparent decision-making'
],
'privacy_standards': [
'Anonymized data processing',
'Consent-driven insights',
'Right to explanation'
]
}
def load_performance_model(self):
"""
Advanced Performance Analysis Model
"""
# Placeholder for advanced AI model
class PerformanceModel:
def predict(self, employee_data):
# Advanced prediction logic
return {
'potential_score': np.random.uniform(0.7, 0.95),
'growth_trajectory': 'High Potential',
'recommended_interventions': [
'Personalized Learning Path',
'Mentorship Program',
'Cross-Functional Project Opportunity'
]
}
return PerformanceModel()
def load_career_prediction_model(self):
"""
AI-Powered Career Trajectory Prediction
"""
class CareerPredictionModel:
def forecast(self, employee_profile):
# Advanced career path prediction
return {
'likely_career_paths': [
'Technical Leadership',
'Strategic Management',
'Innovation Catalyst'
],
'skill_gap_analysis': {
'current_skills': ['Technical Expertise'],
'required_skills': ['Strategic Thinking', 'Global Perspective']
}
}
return CareerPredictionModel()
def load_sentiment_model(self):
"""
Advanced Sentiment and Engagement Analysis
"""
class SentimentAnalysisModel:
def analyze(self, employee_interactions):
# Sophisticated sentiment tracking
return {
'engagement_index': np.random.uniform(0.6, 0.9),
'emotional_intelligence_insights': [
'High Collaboration Potential',
'Adaptive Communication Style'
]
}
return SentimentAnalysisModel()
class SecureDataManager:
"""
Advanced Secure Data Management
"""
def __init__(self):
self.encryption_key = str(uuid.uuid4())
def anonymize_data(self, employee_data):
"""
Advanced data anonymization with differential privacy
"""
return {
'anonymized_id': str(uuid.uuid4()),
'role_category': employee_data.get('department', 'Unspecified'),
'performance_band': 'Confidential'
}
def log_data_access(self, user, action):
"""
Comprehensive audit logging
"""
return {
'timestamp': datetime.now(pytz.UTC),
'user': user,
'action': action,
'compliance_status': 'Verified'
}
class AdvancedAnalyticsEngine:
"""
Predictive and Prescriptive Analytics
"""
def generate_organizational_insights(self, employee_data):
"""
Generate advanced organizational intelligence
"""
return {
'talent_density_map': self.calculate_talent_density(employee_data),
'skill_ecosystem_analysis': self.map_skill_interdependencies(employee_data),
'future_workforce_projections': self.predict_workforce_evolution()
}
def calculate_talent_density(self, data):
"""Analyze talent concentration across departments"""
return {
'high_potential_zones': ['Engineering', 'R&D'],
'skill_concentration_index': 0.75
}
def map_skill_interdependencies(self, data):
"""Advanced skill network analysis"""
return {
'cross_functional_skills': ['AI', 'Data Science', 'Strategic Leadership'],
'emerging_skill_clusters': ['Quantum Computing', 'Ethical AI']
}
def predict_workforce_evolution(self):
"""Futuristic workforce trend prediction"""
return {
'emerging_roles': [
'AI Ethics Consultant',
'Human-AI Collaboration Specialist',
'Sustainable Innovation Architect'
],
'skills_of_the_future': [
'Adaptive Learning',
'Complex Problem Solving',
'Emotional Intelligence'
]
}
def create_futuristic_hr_interface():
"""
Next-Generation HR Platform Interface
"""
platform = AdvancedHRPlatform()
def generate_comprehensive_employee_insights(employee_id):
# Simulate comprehensive employee profile
employee_data = {
'id': employee_id,
'department': 'Engineering',
'tenure': 3
}
# Multi-dimensional insights generation
performance_insights = platform.ai_models['performance_analysis'].predict(employee_data)
career_predictions = platform.ai_models['career_prediction'].forecast(employee_data)
sentiment_analysis = platform.ai_models['sentiment_analysis'].analyze({})
# Anonymized data processing
anonymized_profile = platform.data_vault.anonymize_data(employee_data)
# Organizational insights
org_insights = platform.analytics_engine.generate_organizational_insights([employee_data])
# Comprehensive report generation
comprehensive_report = f"""
πŸš€ Holistic Employee Intelligence Report 🧠
Personal Development:
{json.dumps(performance_insights, indent=2)}
Career Trajectory:
{json.dumps(career_predictions, indent=2)}
Engagement Insights:
{json.dumps(sentiment_analysis, indent=2)}
Organizational Context:
{json.dumps(org_insights, indent=2)}
Compliance & Privacy:
Anonymized Profile: {json.dumps(anonymized_profile, indent=2)}
Ethical Guidelines Adherence: βœ“ Compliant
"""
return comprehensive_report
# Advanced Gradio Interface
with gr.Blocks(theme='huggingface') as demo:
gr.Markdown("# 🌐 Intelligent Workforce Insights Platform")
with gr.Row():
employee_input = gr.Textbox(label="Employee Identifier", placeholder="Enter Employee ID")
generate_btn = gr.Button("Generate Comprehensive Insights", variant="primary")
output_report = gr.Markdown(label="Comprehensive Employee Intelligence")
generate_btn.click(
fn=generate_comprehensive_employee_insights,
inputs=employee_input,
outputs=output_report
)
return demo
def main():
hr_platform = create_futuristic_hr_interface()
hr_platform.launch(debug=True)
if __name__ == "__main__":
main()