Spaces:
Running
Running
from inference import Inference | |
import argparse | |
import gradio as gr | |
import glob | |
def parse_option(): | |
parser = argparse.ArgumentParser('MetaFG Inference script', add_help=False) | |
parser.add_argument('--cfg', type=str, metavar="FILE", help='path to config file', default="configs/MetaFG_2_224.yaml") | |
# easy config modification | |
parser.add_argument('--model-path', type=str, help="path to model data", default="./ckpt_4_mf2.pth") | |
parser.add_argument('--img-size', type=int, default=384, help='path to image') | |
parser.add_argument('--meta-path', default="meta.txt", type=str, help='path to meta data') | |
parser.add_argument('--names-path', default="names_mf2.txt", type=str, help='path to meta data') | |
args = parser.parse_args() | |
return args | |
if __name__ == '__main__': | |
args = parse_option() | |
model = Inference(config_path=args.cfg, | |
model_path=args.model_path, | |
names_path=args.names_path) | |
def classify(image): | |
preds = model.infer(img_path=image, meta_data_path="meta.txt").squeeze() | |
print(len(model.classes)) | |
print(model.classes) | |
confidences = {c: float(preds[i]) for i,c in enumerate(model.classes)} | |
return confidences | |
gr.Interface(pfn=classify, | |
inputs=gr.Image(shape=(args.img_size, args.img_size), type="pil"), | |
outputs=gr.Label(num_top_classes=10), | |
examples=glob.glob("./example_images/*")).launch() | |