File size: 2,160 Bytes
93d7c3b
 
 
 
fb94c0b
93d7c3b
0e84678
 
a6aebb9
93d7c3b
 
 
11d953b
 
 
 
6c16ee3
11d953b
a70cc2a
93d7c3b
 
a6aebb9
93d7c3b
 
a6aebb9
 
93d7c3b
 
 
 
 
 
 
 
 
 
 
 
 
4a20b9f
8ec2336
11d953b
93d7c3b
 
 
 
bd53cf1
93d7c3b
 
 
 
 
 
 
 
fb94c0b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import gradio as gr
import torch 
import spacy
import os
import whisper

os.system('pip install https://huggingface.co/Armandoliv/es_pipeline/resolve/main/es_pipeline-any-py3-none-any.whl')
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_whisper = whisper.load_model("small")
nlp_ner = spacy.load("es_pipeline")

def main_generator(youtube_id:str):
  YouTubeID = youtube_id.split("https://www.youtube.com/watch?v=") #
  if len(YouTubeID)>1:
      YouTubeID = YouTubeID[1]
  else:
      YouTubeID ='XfyGv-xwjlI'
      
  OutputFile = f'test_audio_youtube_{YouTubeID}.m4a'

  os.system(f"youtube-dl -o {OutputFile} {YouTubeID} --extract-audio --restrict-filenames -f 'bestaudio[ext=m4a]'")
  
  result = model_whisper.transcribe(OutputFile)
  text = result['text']
  doc = nlp_ner(text)

  output_list = []
  for ent in doc.ents:
      result_dict = {
          'entity': ent.label_,
          'word': ent.text,
          'start':ent.start_char,
          'end': ent.end_char
      }
      output_list.append(result_dict)

  return {"text": text, "entities": output_list}      
inputs = [gr.Textbox(lines=1, placeholder="Link of youtube video here...", label="Input")]
outputs = gr.HighlightedText()
title="ASR FOR SPANISH MEDICAL RECORDS"
description = "This demo uses AI Models to create an AUDIO ANNOTATION FOR MEDICAL RECORDS "
examples = ['https://www.youtube.com/watch?v=xOZM-1p-jAk']

io = gr.Interface(fn=main_generator, inputs=inputs, outputs=outputs, title=title, description = description, examples = examples,

                  css= """.gr-button-primary { background: -webkit-linear-gradient( 
                    70deg, #355764 0%, #55a8a1 100% ) !important;     background: #355764;
                        background: linear-gradient( 
                    90deg, #355764 0%, #55a8a1 100% ) !important;
                        background: -moz-linear-gradient( 90deg, #355764 0%, #55a8a1 100% ) !important;
                        background: -webkit-linear-gradient( 
                    90deg, #355764 0%, #55a8a1 100% ) !important;
                    color:white !important}"""
                  )
  
io.launch()