Spaces:
Runtime error
Runtime error
""" | |
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset) | |
author: lzhbrian (https://lzhbrian.me) | |
date: 2020.1.5 | |
note: code is heavily borrowed from | |
https://github.com/NVlabs/ffhq-dataset | |
http://dlib.net/face_landmark_detection.py.html | |
requirements: | |
apt install cmake | |
conda install Pillow numpy scipy | |
pip install dlib | |
# download face landmark model from: | |
# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 | |
""" | |
from argparse import ArgumentParser | |
import time | |
import numpy as np | |
import PIL | |
import PIL.Image | |
import os | |
import scipy | |
import scipy.ndimage | |
import dlib | |
import multiprocessing as mp | |
import math | |
#from configs.paths_config import model_paths | |
SHAPE_PREDICTOR_PATH = 'shape_predictor_68_face_landmarks.dat'#model_paths["shape_predictor"] | |
def get_landmark(filepath, predictor): | |
"""get landmark with dlib | |
:return: np.array shape=(68, 2) | |
""" | |
detector = dlib.get_frontal_face_detector() | |
if type(filepath) == str: | |
img = dlib.load_rgb_image(filepath) | |
else: | |
img = filepath | |
dets = detector(img, 1) | |
if len(dets) == 0: | |
print('Error: no face detected!') | |
return None | |
shape = None | |
for k, d in enumerate(dets): | |
shape = predictor(img, d) | |
if shape is None: | |
print('Error: No face detected! If you are sure there are faces in your input, you may rerun the code several times until the face is detected. Sometimes the detector is unstable.') | |
t = list(shape.parts()) | |
a = [] | |
for tt in t: | |
a.append([tt.x, tt.y]) | |
lm = np.array(a) | |
return lm | |
def align_face(filepath, predictor): | |
""" | |
:param filepath: str | |
:return: PIL Image | |
""" | |
lm = get_landmark(filepath, predictor) | |
if lm is None: | |
return None | |
lm_chin = lm[0: 17] # left-right | |
lm_eyebrow_left = lm[17: 22] # left-right | |
lm_eyebrow_right = lm[22: 27] # left-right | |
lm_nose = lm[27: 31] # top-down | |
lm_nostrils = lm[31: 36] # top-down | |
lm_eye_left = lm[36: 42] # left-clockwise | |
lm_eye_right = lm[42: 48] # left-clockwise | |
lm_mouth_outer = lm[48: 60] # left-clockwise | |
lm_mouth_inner = lm[60: 68] # left-clockwise | |
# Calculate auxiliary vectors. | |
eye_left = np.mean(lm_eye_left, axis=0) | |
eye_right = np.mean(lm_eye_right, axis=0) | |
eye_avg = (eye_left + eye_right) * 0.5 | |
eye_to_eye = eye_right - eye_left | |
mouth_left = lm_mouth_outer[0] | |
mouth_right = lm_mouth_outer[6] | |
mouth_avg = (mouth_left + mouth_right) * 0.5 | |
eye_to_mouth = mouth_avg - eye_avg | |
# Choose oriented crop rectangle. | |
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] | |
x /= np.hypot(*x) | |
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) | |
y = np.flipud(x) * [-1, 1] | |
c = eye_avg + eye_to_mouth * 0.1 | |
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) | |
qsize = np.hypot(*x) * 2 | |
# read image | |
if type(filepath) == str: | |
img = PIL.Image.open(filepath) | |
else: | |
img = PIL.Image.fromarray(filepath) | |
output_size = 256 | |
transform_size = 256 | |
enable_padding = True | |
# Shrink. | |
shrink = int(np.floor(qsize / output_size * 0.5)) | |
if shrink > 1: | |
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) | |
img = img.resize(rsize, PIL.Image.ANTIALIAS) | |
quad /= shrink | |
qsize /= shrink | |
# Crop. | |
border = max(int(np.rint(qsize * 0.1)), 3) | |
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), | |
int(np.ceil(max(quad[:, 1])))) | |
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), | |
min(crop[3] + border, img.size[1])) | |
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: | |
img = img.crop(crop) | |
quad -= crop[0:2] | |
# Pad. | |
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))), | |
int(np.ceil(max(quad[:, 1])))) | |
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), | |
max(pad[3] - img.size[1] + border, 0)) | |
if enable_padding and max(pad) > border - 4: | |
pad = np.maximum(pad, int(np.rint(qsize * 0.3))) | |
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') | |
h, w, _ = img.shape | |
y, x, _ = np.ogrid[:h, :w, :1] | |
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]), | |
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3])) | |
blur = qsize * 0.02 | |
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) | |
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) | |
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') | |
quad += pad[:2] | |
# Transform. | |
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR) | |
if output_size < transform_size: | |
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) | |
# Save aligned image. | |
return img | |
def chunks(lst, n): | |
"""Yield successive n-sized chunks from lst.""" | |
for i in range(0, len(lst), n): | |
yield lst[i:i + n] | |
def extract_on_paths(file_paths): | |
predictor = dlib.shape_predictor(SHAPE_PREDICTOR_PATH) | |
pid = mp.current_process().name | |
print('\t{} is starting to extract on #{} images'.format(pid, len(file_paths))) | |
tot_count = len(file_paths) | |
count = 0 | |
for file_path, res_path in file_paths: | |
count += 1 | |
if count % 100 == 0: | |
print('{} done with {}/{}'.format(pid, count, tot_count)) | |
try: | |
res = align_face(file_path, predictor) | |
res = res.convert('RGB') | |
os.makedirs(os.path.dirname(res_path), exist_ok=True) | |
res.save(res_path) | |
except Exception: | |
continue | |
print('\tDone!') | |
def parse_args(): | |
parser = ArgumentParser(add_help=False) | |
parser.add_argument('--num_threads', type=int, default=1) | |
parser.add_argument('--root_path', type=str, default='') | |
args = parser.parse_args() | |
return args | |
def run(args): | |
root_path = args.root_path | |
out_crops_path = root_path + '_crops' | |
if not os.path.exists(out_crops_path): | |
os.makedirs(out_crops_path, exist_ok=True) | |
file_paths = [] | |
for root, dirs, files in os.walk(root_path): | |
for file in files: | |
file_path = os.path.join(root, file) | |
fname = os.path.join(out_crops_path, os.path.relpath(file_path, root_path)) | |
res_path = '{}.jpg'.format(os.path.splitext(fname)[0]) | |
if os.path.splitext(file_path)[1] == '.txt' or os.path.exists(res_path): | |
continue | |
file_paths.append((file_path, res_path)) | |
file_chunks = list(chunks(file_paths, int(math.ceil(len(file_paths) / args.num_threads)))) | |
print(len(file_chunks)) | |
pool = mp.Pool(args.num_threads) | |
print('Running on {} paths\nHere we goooo'.format(len(file_paths))) | |
tic = time.time() | |
pool.map(extract_on_paths, file_chunks) | |
toc = time.time() | |
print('Mischief managed in {}s'.format(toc - tic)) | |
if __name__ == '__main__': | |
args = parse_args() | |
run(args) | |