Spaces:
Sleeping
Sleeping
import os | |
import random | |
from openai import OpenAI | |
import streamlit as st | |
from dotenv import load_dotenv | |
from huggingface_hub import get_token | |
from langchain_huggingface import HuggingFaceEndpoint | |
from langchain.indexes import VectorstoreIndexCreator | |
from langchain_community.document_loaders.hugging_face_dataset import HuggingFaceDatasetLoader | |
from langchain_huggingface.embeddings.huggingface_endpoint import HuggingFaceEndpointEmbeddings | |
from langchain.chains import RetrievalQA | |
from langchain_community.vectorstores import FAISS | |
# Load environment variables | |
load_dotenv() | |
api_key=os.environ.get('API_KEY') | |
get_token() | |
# Constants | |
MAX_TOKENS = 4000 | |
DEFAULT_TEMPERATURE = 0.5 | |
# Initialize the OpenAI client | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1", | |
api_key=api_key | |
) | |
# Create supported models | |
model_links = { | |
"Meta-Llama-3.1-8B": "meta-llama/Meta-Llama-3.1-8B-Instruct", | |
"Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3", | |
"Gemma-2-27b-it": "google/gemma-2-27b-it", | |
"Falcon-7b-Instruct": "tiiuae/falcon-7b-instruct", | |
} | |
# Load documents and set up RAG pipeline | |
def setup_rag_pipeline(): | |
loader = HuggingFaceDatasetLoader( | |
path='Atreyu4EVR/General-BYUI-Data', | |
page_content_column='content' | |
) | |
documents = loader.load() | |
hf_embeddings = HuggingFaceEndpointEmbeddings( | |
model="sentence-transformers/all-MiniLM-L12-v2", | |
task="feature-extraction", | |
huggingfacehub_api_token=api_key | |
) | |
vector_store = FAISS.from_documents(documents, hf_embeddings) | |
retriever = vector_store.as_retriever() | |
return retriever | |
def reset_conversation(): | |
st.session_state.conversation = [] | |
st.session_state.messages = [] | |
def main(): | |
st.header('Multi-Models with RAG') | |
# Sidebar for model selection and temperature | |
selected_model = st.sidebar.selectbox("Select Model", list(model_links.keys())) | |
temperature = st.sidebar.slider('Select a temperature value', 0.0, 1.0, DEFAULT_TEMPERATURE) | |
st.sidebar.button('Reset Chat', on_click=reset_conversation) | |
if "prev_option" not in st.session_state: | |
st.session_state.prev_option = selected_model | |
if st.session_state.prev_option != selected_model: | |
st.session_state.messages = [] | |
st.session_state.prev_option = selected_model | |
reset_conversation() | |
st.markdown(f'_powered_ by ***:violet[{selected_model}]***') | |
# Display model info | |
st.sidebar.write(f"You're now chatting with **{selected_model}**") | |
st.sidebar.markdown("*Generated content may be inaccurate or false.*") | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Set up RAG pipeline | |
retriever = setup_rag_pipeline() | |
# Chat input and response | |
if prompt := st.chat_input("Type message here..."): | |
process_user_input(client, prompt, selected_model, temperature, retriever) | |
def process_user_input(client, prompt, selected_model, temperature, retriever): | |
# Display user message | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Retrieve relevant documents | |
relevant_docs = retriever.get_relevant_documents(prompt) | |
context = "\n".join([doc.page_content for doc in relevant_docs]) | |
# Prepare messages with context | |
messages = [ | |
{"role": "system", "content": f"You are an AI assistant. Use the following context to answer the user's question: {context}"}, | |
{"role": "user", "content": prompt} | |
] | |
st.session_state.messages.extend(messages) | |
# Generate and display assistant response | |
with st.chat_message("assistant"): | |
try: | |
stream = client.chat.completions.create( | |
model=model_links[selected_model], | |
messages=[ | |
{"role": m["role"], "content": m["content"]} | |
for m in st.session_state.messages | |
], | |
temperature=temperature, | |
stream=True, | |
max_tokens=MAX_TOKENS, | |
) | |
response = st.write_stream(stream) | |
except Exception as e: | |
handle_error(e) | |
return | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
def handle_error(error): | |
response = """π΅βπ« Looks like someone unplugged something! | |
\n Either the model space is being updated or something is down.""" | |
st.write(response) | |
random_dog_pick = random.choice(["broken_llama3.jpeg"]) | |
st.image(random_dog_pick) | |
st.write("This was the error message:") | |
st.write(str(error)) | |
if __name__ == "__main__": | |
main() |