Atreyu4EVR's picture
Update app.py
ada655b verified
raw
history blame
4.88 kB
import os
import random
from openai import OpenAI
import streamlit as st
from dotenv import load_dotenv
from huggingface_hub import get_token
from langchain_huggingface import HuggingFaceEndpoint
from langchain.indexes import VectorstoreIndexCreator
from langchain_community.document_loaders.hugging_face_dataset import HuggingFaceDatasetLoader
from langchain_huggingface.embeddings.huggingface_endpoint import HuggingFaceEndpointEmbeddings
from langchain.chains import RetrievalQA
from langchain_community.vectorstores import FAISS
# Load environment variables
load_dotenv()
api_key=os.environ.get('API_KEY')
get_token()
# Constants
MAX_TOKENS = 4000
DEFAULT_TEMPERATURE = 0.5
# Initialize the OpenAI client
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1",
api_key=api_key
)
# Create supported models
model_links = {
"Meta-Llama-3.1-8B": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3",
"Gemma-2-27b-it": "google/gemma-2-27b-it",
"Falcon-7b-Instruct": "tiiuae/falcon-7b-instruct",
}
# Load documents and set up RAG pipeline
@st.cache_resource
def setup_rag_pipeline():
loader = HuggingFaceDatasetLoader(
path='Atreyu4EVR/General-BYUI-Data',
page_content_column='content'
)
documents = loader.load()
hf_embeddings = HuggingFaceEndpointEmbeddings(
model="sentence-transformers/all-MiniLM-L12-v2",
task="feature-extraction",
huggingfacehub_api_token=api_key
)
vector_store = FAISS.from_documents(documents, hf_embeddings)
retriever = vector_store.as_retriever()
return retriever
def reset_conversation():
st.session_state.conversation = []
st.session_state.messages = []
def main():
st.header('Multi-Models with RAG')
# Sidebar for model selection and temperature
selected_model = st.sidebar.selectbox("Select Model", list(model_links.keys()))
temperature = st.sidebar.slider('Select a temperature value', 0.0, 1.0, DEFAULT_TEMPERATURE)
st.sidebar.button('Reset Chat', on_click=reset_conversation)
if "prev_option" not in st.session_state:
st.session_state.prev_option = selected_model
if st.session_state.prev_option != selected_model:
st.session_state.messages = []
st.session_state.prev_option = selected_model
reset_conversation()
st.markdown(f'_powered_ by ***:violet[{selected_model}]***')
# Display model info
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Set up RAG pipeline
retriever = setup_rag_pipeline()
# Chat input and response
if prompt := st.chat_input("Type message here..."):
process_user_input(client, prompt, selected_model, temperature, retriever)
def process_user_input(client, prompt, selected_model, temperature, retriever):
# Display user message
with st.chat_message("user"):
st.markdown(prompt)
# Retrieve relevant documents
relevant_docs = retriever.get_relevant_documents(prompt)
context = "\n".join([doc.page_content for doc in relevant_docs])
# Prepare messages with context
messages = [
{"role": "system", "content": f"You are an AI assistant. Use the following context to answer the user's question: {context}"},
{"role": "user", "content": prompt}
]
st.session_state.messages.extend(messages)
# Generate and display assistant response
with st.chat_message("assistant"):
try:
stream = client.chat.completions.create(
model=model_links[selected_model],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
temperature=temperature,
stream=True,
max_tokens=MAX_TOKENS,
)
response = st.write_stream(stream)
except Exception as e:
handle_error(e)
return
st.session_state.messages.append({"role": "assistant", "content": response})
def handle_error(error):
response = """πŸ˜΅β€πŸ’« Looks like someone unplugged something!
\n Either the model space is being updated or something is down."""
st.write(response)
random_dog_pick = random.choice(["broken_llama3.jpeg"])
st.image(random_dog_pick)
st.write("This was the error message:")
st.write(str(error))
if __name__ == "__main__":
main()