Spaces:
Running
Running
from typing import List | |
import pytesseract | |
from PIL import Image | |
import re | |
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForTextToSpectrogram, SpeechT5HifiGan | |
from datasets import load_dataset | |
import torch | |
import soundfile as sf | |
def tesseract_ocr(filepath: str) -> str: | |
image = Image.open(filepath) | |
combined_languages = 'eng+hin' | |
extracted_text = pytesseract.image_to_string(image=image, lang=combined_languages) | |
return extracted_text | |
def search_and_highlight(text: str, keyword: str) -> str: | |
if keyword: | |
highlighted_text = re.sub(f"({keyword})", r"<mark>\1</mark>", text, flags=re.IGNORECASE) | |
return highlighted_text | |
return text | |
def ocr_and_tts(filepath: str, keyword: str) -> (str, str): | |
if filepath is None: | |
return "Please upload an image.", None | |
# OCR and keyword highlighting | |
extracted_text = tesseract_ocr(filepath) | |
highlighted_text = search_and_highlight(extracted_text, keyword) | |
# Convert text to speech | |
audio_path = text_to_speech(extracted_text) | |
return highlighted_text, audio_path | |
# Load model | |
processor = AutoProcessor.from_pretrained("Aumkeshchy2003/speecht5_finetuned_Aumkesh_English_tts") | |
model = AutoModelForTextToSpectrogram.from_pretrained("Aumkeshchy2003/speecht5_finetuned_Aumkesh_English_tts") | |
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
# Load speaker embedding | |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) | |
# Move models to GPU | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(device) | |
vocoder = vocoder.to(device) | |
speaker_embeddings = speaker_embeddings.to(device) | |
def text_to_speech(text: str) -> str: | |
inputs = processor(text=text, return_tensors="pt").to(device) | |
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) | |
output_path = "output.wav" | |
sf.write(output_path, speech.cpu().numpy(), samplerate=16000) | |
return output_path | |
demo = gr.Interface( | |
fn=ocr_and_tts, | |
inputs=[ | |
gr.Image(type="filepath", label="Upload Image for OCR"), | |
gr.Textbox(label="Keyword to Highlight", placeholder="Enter a keyword...") | |
], | |
outputs=[ | |
gr.HTML(label="Extracted and Highlighted Text"), | |
gr.Audio(label="Generated Speech") | |
], | |
title="OCR to TTS", | |
description="Upload an image for OCR. The extracted text will be highlighted if a keyword is provided and converted to speech." | |
) | |
if __name__ == "__main__": | |
demo.launch() | |