Spaces:
Running
Running
import gradio as gr | |
from PIL import Image | |
import pytesseract | |
import re | |
def tesseract_ocr(filepath: str, languages: List[str]): | |
image = Image.open(filepath) | |
return pytesseract.image_to_string(image=image, lang=', '.join(languages)) | |
title = "Tesseract OCR" | |
description = "Gradio demo for Tesseract. Tesseract is an open source text recognition (OCR) Engine." | |
article = "<p style='text-align: center'><a href='https://tesseract-ocr.github.io/' target='_blank'>Tesseract documentation</a> | <a href='https://github.com/tesseract-ocr/tesseract' target='_blank'>Github Repo</a></p>" | |
examples = [ | |
['examples/eurotext.png', ['eng']], | |
['examples/tesseract_sample.png', ['jpn', 'eng']], | |
['examples/chi.jpg', ['HanS', 'HanT']] | |
] | |
def search_and_highlight(text, keyword): | |
highlighted_text = re.sub(f"({keyword})", r"<mark>\1</mark>", text, flags=re.IGNORECASE) | |
return highlighted_text | |
def ocr_and_search(image, keyword): | |
if image is None: | |
return "Please upload an image." | |
extracted_text = perform_ocr(image) | |
if keyword: | |
highlighted_text = search_and_highlight(extracted_text, keyword) | |
return highlighted_text | |
else: | |
return extracted_text | |
iface = gr.Interface( | |
fn=ocr_and_search, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Image"), | |
gr.Textbox(label="Enter keyword to search (optional)") | |
], | |
outputs=gr.HTML(label="Extracted and Highlighted Text"), | |
title="OCR and Keyword Search", | |
description="Upload an image for OCR processing and search for keywords in the extracted text." | |
) | |
iface.launch() | |