Spaces:
Running
Running
import os | |
from duckpy import Client | |
from langchain import PromptTemplate, OpenAI, LLMChain | |
from langchain.agents import Tool | |
from langchain.base_language import BaseLanguageModel | |
MAX_SEARCH_RESULTS = 20 # Number of search results to observe at a time | |
search_description = """ Useful for when you need to ask with search. Use direct language and be | |
EXPLICIT in what you want to search. | |
## Examples of incorrect use | |
1. Action: Search | |
Action Input: "[name of bagel shop] menu" | |
The Action Input cannot be None or empty. | |
""" | |
notepad_description = """ Useful for when you need to note-down specific | |
information for later reference. Please provide full information you want to | |
note-down in the Action Input and all future prompts will remember it. | |
This is the mandatory tool after using the search tool. | |
Using Notepad does not always lead to a final answer. | |
## Exampels of using notepad tool | |
Action: Notepad | |
Action Input: the information you want to note-down | |
""" | |
async def ddg(query: str): | |
if query is None or query.lower().strip().strip('"') == "none" or query.lower().strip().strip('"') == "null": | |
x = "The action input field is empty. Please provide a search query." | |
return [x] | |
else: | |
client = Client() | |
return client.search(query)[:MAX_SEARCH_RESULTS] | |
async def notepad(x: str) -> str: | |
return f"{[x]}" | |
search_tool = Tool(name="Search", | |
func=lambda x: x, | |
coroutine=ddg, | |
description=search_description) | |
note_tool = Tool(name="Notepad", | |
func=lambda x: x, | |
coroutine=notepad, | |
description=notepad_description) | |
def rewrite_search_query(q: str, search_history, llm: BaseLanguageModel) -> str: | |
history_string = '\n'.join(search_history) | |
template ="""We are using the Search tool. | |
# Previous queries: | |
{history_string}. \n\n Rewrite query {action_input} to be | |
different from the previous ones.""" | |
prompt = PromptTemplate(template=template, | |
input_variables=["action_input", "history_string"]) | |
llm_chain = LLMChain(prompt=prompt, llm=llm) | |
return llm_chain.predict(action_input=q, history_string=history_string) | |