|
import gradio as gr |
|
import numpy as np |
|
import torch |
|
from datasets import load_dataset |
|
|
|
from transformers import AutoTokenizer, VitsModel, pipeline |
|
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu" |
|
|
|
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny", device=device) |
|
translater = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru") |
|
|
|
model = VitsModel.from_pretrained("facebook/mms-tts-rus") |
|
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rus") |
|
|
|
def translate(audio, translater: pipeline = translater): |
|
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) |
|
return translater(outputs['text'])[0]['translation_text'] |
|
|
|
def synthesise(text: str, tokenizer: AutoTokenizer = tokenizer, model: VitsModel = model): |
|
inputs = tokenizer(text, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
output = model(**inputs).waveform |
|
return output.cpu() |
|
|
|
|
|
def speech_to_speech_translation(audio): |
|
translated_text = translate(audio) |
|
synthesised_speech = synthesise(translated_text) |
|
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) |
|
return 16000, synthesised_speech[0] |
|
|
|
|
|
title = "Cascaded STST" |
|
description = """ |
|
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in multi language to target speech in Russian. Demo uses OpenAI's [Whisper Tiny](https://huggingface.co/openai/whisper-tiny) model for speech translation, and Facebook's |
|
[mms-tts-rus](https://huggingface.co/acebook/mms-tts-rus) model for text-to-speech: |
|
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") |
|
""" |
|
|
|
demo = gr.Blocks() |
|
|
|
mic_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=gr.Audio(source="microphone", type="filepath"), |
|
outputs=gr.Audio(label="Generated Speech", type="numpy"), |
|
title=title, |
|
description=description, |
|
) |
|
|
|
file_translate = gr.Interface( |
|
fn=speech_to_speech_translation, |
|
inputs=gr.Audio(source="upload", type="filepath"), |
|
outputs=gr.Audio(label="Generated Speech", type="numpy"), |
|
examples=[["./test_2.wav"]], |
|
title=title, |
|
description=description, |
|
) |
|
|
|
with demo: |
|
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) |
|
|
|
demo.launch() |