File size: 7,449 Bytes
15f516d
 
 
 
 
 
 
 
 
 
 
 
 
 
781befc
15f516d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import gradio as gr 
from transformers import AutoModelForCausalLM,AutoProcessor,pipeline
from PIL import Image
import os 
import tempfile
import torch
from pathlib import Path
import secrets

# Initialise Hugging Face LLM
model_id="microsoft/Phi-3.5-vision-instruct"
model=AutoModelForCausalLM.from_pretrained(
    model_id,
    trust_remote_code=True,
    torch_dtype=torch.float16,)

processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)
math_messages=[]
# Function for processing the image 
def process_image(image,should_convert=False):
    '''
    Saves the uploaded image or sketch and then extracts math-related descriptions using the model
    '''
    global math_messages
    math_messages=[]
    # create a temporary directory for saving images
    uploaded_file_dir=os.environ.get("GRADIO_TEMP_DIR") or str(Path(tempfile.gettempdir())/"gradio")
    os.makedirs(uploaded_file_dir,exist_ok=True)
    # saves the uploaded image as a temporary file
    name = f"tmp{secrets.token_hex(20)}.jpg"
    filename = os.path.join(uploaded_file_dir, name)
    # If the input was a sketch then convert into RGB format
    if should_convert:
        new_img = Image.new('RGB', size=(image.width, image.height), color=(255, 255, 255))
        new_img.paste(image, (0, 0), mask=image)
        image = new_img
    # Saves the image in the temporary file
    image.save(filename)
    # Calling the model to process images
    messages = [{
        'role': 'system',
        'content': [{'text': 'You are a helpful assistant.'}]
    }, {
        'role': 'user',
        'content': [
            {'image': f'file://{filename}'},
            {'text': 'Please describe the math-related content in this image, ensuring that any LaTeX formulas are correctly transcribed. Non-mathematical details do not need to be described.'}
        ]
    }]
    prompt = processor.tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    # Process the input
    inputs = processor(prompt, image, return_tensors="pt")
    
    # Generate the response
    generation_args = {
        "max_new_tokens": 1000,
        "temperature": 0.2,
        "do_sample": True,
    }
    generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
    
    # Decode the response
    generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
    response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    return response

# Function to get math-response from the processed image
def get_math_response(image_description,user_question):
    global math_messages
    if not math_messages:
        math_messages.append({'role': 'system', 'content': 'You are a helpful math assistant.'})
    math_messages = math_messages[:1]
    if image_description is not None:
        content = f'Image description: {image_description}\n\n'
    else:
        content = ''
    query = f"{content}User question: {user_question}"
    math_messages.append({'role': 'user', 'content': query})
    pipe = pipeline("text-generation", model="deepseek-ai/DeepSeek-V2.5-1210", trust_remote_code=True)
    response=pipe(math_messages)
    print(response)
    answer = None
    for resp in response:
        if resp.output is None:
            continue
        answer = resp.output.choices[0].message.content
        yield answer.replace("\\", "\\\\")
    print(f'query: {query}\nanswer: {answer}')
    if answer is None:
        math_messages.pop()
    else:
        math_messages.append({'role': 'assistant', 'content': answer})
# creating the chatbot
def math_chat_bot(image, sketchpad, question, state):
    current_tab_index = state["tab_index"]
    image_description = None
    # Upload
    if current_tab_index == 0:
        if image is not None:
            image_description = process_image(image)
    # Sketch
    elif current_tab_index == 1:
        print(sketchpad)
        if sketchpad and sketchpad["composite"]:
            image_description = process_image(sketchpad["composite"], True)
    yield from get_math_response(image_description, question)

css = """
#qwen-md .katex-display { display: inline; }
#qwen-md .katex-display>.katex { display: inline; }
#qwen-md .katex-display>.katex>.katex-html { display: inline; }
"""

def tabs_select(e: gr.SelectData, _state):
    _state["tab_index"] = e.index


# εˆ›ε»ΊGradioζŽ₯口
with gr.Blocks(css=css) as demo:
    gr.HTML(
            """\
<center><font size=3>This WebUI is based on Qwen2-VL for OCR and Qwen2.5-Math for mathematical reasoning. You can input either images or texts of mathematical or arithmetic problems.</center>"""
            )
    state = gr.State({"tab_index": 0})
    with gr.Row():
        with gr.Column():
            with gr.Tabs() as input_tabs:
                with gr.Tab("Upload"):
                    input_image = gr.Image(type="pil", label="Upload"),
                with gr.Tab("Sketch"):
                    input_sketchpad = gr.Sketchpad(type="pil", label="Sketch", layers=False)
            input_tabs.select(fn=tabs_select, inputs=[state])
            input_text = gr.Textbox(label="input your question")
            with gr.Row():
                with gr.Column():
                    clear_btn = gr.ClearButton(
                        [*input_image, input_sketchpad, input_text])
                with gr.Column():
                    submit_btn = gr.Button("Submit", variant="primary")
        with gr.Column():
            output_md = gr.Markdown(label="answer",
                                    latex_delimiters=[{
                                        "left": "\\(",
                                        "right": "\\)",
                                        "display": True
                                    }, {
                                        "left": "\\begin\{equation\}",
                                        "right": "\\end\{equation\}",
                                        "display": True
                                    }, {
                                        "left": "\\begin\{align\}",
                                        "right": "\\end\{align\}",
                                        "display": True
                                    }, {
                                        "left": "\\begin\{alignat\}",
                                        "right": "\\end\{alignat\}",
                                        "display": True
                                    }, {
                                        "left": "\\begin\{gather\}",
                                        "right": "\\end\{gather\}",
                                        "display": True
                                    }, {
                                        "left": "\\begin\{CD\}",
                                        "right": "\\end\{CD\}",
                                        "display": True
                                    }, {
                                        "left": "\\[",
                                        "right": "\\]",
                                        "display": True
                                    }],
                                    elem_id="qwen-md")
        submit_btn.click(
            fn=math_chat_bot,
            inputs=[*input_image, input_sketchpad, input_text, state],
            outputs=output_md)
demo.launch()