Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM,AutoProcessor,pipeline | |
from PIL import Image | |
import os | |
import tempfile | |
import torch | |
from pathlib import Path | |
import secrets | |
# Initialise Hugging Face LLM | |
model_id="microsoft/Phi-3.5-vision-instruct" | |
model=AutoModelForCausalLM.from_pretrained( | |
model_id, | |
trust_remote_code=True, | |
torch_dtype=torch.float16,) | |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16) | |
math_messages=[] | |
# Function for processing the image | |
def process_image(image,should_convert=False): | |
''' | |
Saves the uploaded image or sketch and then extracts math-related descriptions using the model | |
''' | |
global math_messages | |
math_messages=[] | |
# create a temporary directory for saving images | |
uploaded_file_dir=os.environ.get("GRADIO_TEMP_DIR") or str(Path(tempfile.gettempdir())/"gradio") | |
os.makedirs(uploaded_file_dir,exist_ok=True) | |
# saves the uploaded image as a temporary file | |
name = f"tmp{secrets.token_hex(20)}.jpg" | |
filename = os.path.join(uploaded_file_dir, name) | |
# If the input was a sketch then convert into RGB format | |
if should_convert: | |
new_img = Image.new('RGB', size=(image.width, image.height), color=(255, 255, 255)) | |
new_img.paste(image, (0, 0), mask=image) | |
image = new_img | |
# Saves the image in the temporary file | |
image.save(filename) | |
# Calling the model to process images | |
messages = [{ | |
'role': 'system', | |
'content': [{'text': 'You are a helpful assistant.'}] | |
}, { | |
'role': 'user', | |
'content': [ | |
{'image': f'file://{filename}'}, | |
{'text': 'Please describe the math-related content in this image, ensuring that any LaTeX formulas are correctly transcribed. Non-mathematical details do not need to be described.'} | |
] | |
}] | |
prompt = processor.tokenizer.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
# Process the input | |
inputs = processor(prompt, image, return_tensors="pt") | |
# Generate the response | |
generation_args = { | |
"max_new_tokens": 1000, | |
"temperature": 0.2, | |
"do_sample": True, | |
} | |
generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args) | |
# Decode the response | |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] | |
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
return response | |
# Function to get math-response from the processed image | |
def get_math_response(image_description,user_question): | |
global math_messages | |
if not math_messages: | |
math_messages.append({'role': 'system', 'content': 'You are a helpful math assistant.'}) | |
math_messages = math_messages[:1] | |
if image_description is not None: | |
content = f'Image description: {image_description}\n\n' | |
else: | |
content = '' | |
query = f"{content}User question: {user_question}" | |
math_messages.append({'role': 'user', 'content': query}) | |
pipe = pipeline("text-generation", model="deepseek-ai/DeepSeek-V2.5-1210", trust_remote_code=True) | |
response=pipe(math_messages) | |
print(response) | |
answer = None | |
for resp in response: | |
if resp.output is None: | |
continue | |
answer = resp.output.choices[0].message.content | |
yield answer.replace("\\", "\\\\") | |
print(f'query: {query}\nanswer: {answer}') | |
if answer is None: | |
math_messages.pop() | |
else: | |
math_messages.append({'role': 'assistant', 'content': answer}) | |
# creating the chatbot | |
def math_chat_bot(image, sketchpad, question, state): | |
current_tab_index = state["tab_index"] | |
image_description = None | |
# Upload | |
if current_tab_index == 0: | |
if image is not None: | |
image_description = process_image(image) | |
# Sketch | |
elif current_tab_index == 1: | |
print(sketchpad) | |
if sketchpad and sketchpad["composite"]: | |
image_description = process_image(sketchpad["composite"], True) | |
yield from get_math_response(image_description, question) | |
css = """ | |
#qwen-md .katex-display { display: inline; } | |
#qwen-md .katex-display>.katex { display: inline; } | |
#qwen-md .katex-display>.katex>.katex-html { display: inline; } | |
""" | |
def tabs_select(e: gr.SelectData, _state): | |
_state["tab_index"] = e.index | |
# εε»ΊGradioζ₯ε£ | |
with gr.Blocks(css=css) as demo: | |
gr.HTML( | |
"""\ | |
<center><font size=3>This WebUI is based on Qwen2-VL for OCR and Qwen2.5-Math for mathematical reasoning. You can input either images or texts of mathematical or arithmetic problems.</center>""" | |
) | |
state = gr.State({"tab_index": 0}) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tabs() as input_tabs: | |
with gr.Tab("Upload"): | |
input_image = gr.Image(type="pil", label="Upload"), | |
with gr.Tab("Sketch"): | |
input_sketchpad = gr.Sketchpad(type="pil", label="Sketch", layers=False) | |
input_tabs.select(fn=tabs_select, inputs=[state]) | |
input_text = gr.Textbox(label="input your question") | |
with gr.Row(): | |
with gr.Column(): | |
clear_btn = gr.ClearButton( | |
[*input_image, input_sketchpad, input_text]) | |
with gr.Column(): | |
submit_btn = gr.Button("Submit", variant="primary") | |
with gr.Column(): | |
output_md = gr.Markdown(label="answer", | |
latex_delimiters=[{ | |
"left": "\\(", | |
"right": "\\)", | |
"display": True | |
}, { | |
"left": "\\begin\{equation\}", | |
"right": "\\end\{equation\}", | |
"display": True | |
}, { | |
"left": "\\begin\{align\}", | |
"right": "\\end\{align\}", | |
"display": True | |
}, { | |
"left": "\\begin\{alignat\}", | |
"right": "\\end\{alignat\}", | |
"display": True | |
}, { | |
"left": "\\begin\{gather\}", | |
"right": "\\end\{gather\}", | |
"display": True | |
}, { | |
"left": "\\begin\{CD\}", | |
"right": "\\end\{CD\}", | |
"display": True | |
}, { | |
"left": "\\[", | |
"right": "\\]", | |
"display": True | |
}], | |
elem_id="qwen-md") | |
submit_btn.click( | |
fn=math_chat_bot, | |
inputs=[*input_image, input_sketchpad, input_text, state], | |
outputs=output_md) | |
demo.launch() |