File size: 22,446 Bytes
8d14048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2d1afb
8d14048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


from typing import Optional, Union, Tuple, List, Callable, Dict
from tqdm import tqdm
import torch
import torch.nn.functional as nnf
import numpy as np
import abc
from . import ptp_utils
from . import seq_aligner
import shutil
from torch.optim.adam import Adam
from PIL import Image


LOW_RESOURCE = False 
NUM_DDIM_STEPS = 50
MAX_NUM_WORDS = 77
device = torch.device('cuda')
from transformers import CLIPTextModel, CLIPTokenizer

pretrained_model_path = "checkpoints/CompVis/stable-diffusion-v1-4/"

ldm_stable = None
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")


class LocalBlend:
    
    def get_mask(self, maps, alpha, use_pool):
        k = 1
        maps = (maps * alpha).sum(-1).mean(1)
        if use_pool:
            maps = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 +1), (1, 1), padding=(k, k))
        mask = nnf.interpolate(maps, size=(x_t.shape[2:]))
        mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
        mask = mask.gt(self.th[1-int(use_pool)])
        mask = mask[:1] + mask
        return mask
    
    def __call__(self, x_t, attention_store):
        self.counter += 1
        if self.counter > self.start_blend:
           
            maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
            maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, MAX_NUM_WORDS) for item in maps]
            maps = torch.cat(maps, dim=1)
            mask = self.get_mask(maps, self.alpha_layers, True)
            if self.substruct_layers is not None:
                maps_sub = ~self.get_mask(maps, self.substruct_layers, False)
                mask = mask * maps_sub
            mask = mask.float()
            x_t = x_t[:1] + mask * (x_t - x_t[:1])
        return x_t
       
    def __init__(self, prompts: List[str], words: List[List[str]], substruct_words=None, start_blend=0.2, th=(.3, .3)):
        alpha_layers = torch.zeros(len(prompts),  1, 1, 1, 1, MAX_NUM_WORDS)
        for i, (prompt, words_) in enumerate(zip(prompts, words)):
            if type(words_) is str:
                words_ = [words_]
            for word in words_:
                ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
                alpha_layers[i, :, :, :, :, ind] = 1
        
        if substruct_words is not None:
            substruct_layers = torch.zeros(len(prompts),  1, 1, 1, 1, MAX_NUM_WORDS)
            for i, (prompt, words_) in enumerate(zip(prompts, substruct_words)):
                if type(words_) is str:
                    words_ = [words_]
                for word in words_:
                    ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
                    substruct_layers[i, :, :, :, :, ind] = 1
            self.substruct_layers = substruct_layers.to(device)
        else:
            self.substruct_layers = None
        self.alpha_layers = alpha_layers.to(device)
        self.start_blend = int(start_blend * NUM_DDIM_STEPS)
        self.counter = 0 
        self.th=th


class EmptyControl:
    
    
    def step_callback(self, x_t):
        return x_t
    
    def between_steps(self):
        return
    
    def __call__(self, attn, is_cross: bool, place_in_unet: str):
        return attn

    
class AttentionControl(abc.ABC):
    
    def step_callback(self, x_t):
        return x_t
    
    def between_steps(self):
        return
    
    @property
    def num_uncond_att_layers(self):
        return self.num_att_layers if LOW_RESOURCE else 0
    
    @abc.abstractmethod
    def forward (self, attn, is_cross: bool, place_in_unet: str):
        raise NotImplementedError

    def __call__(self, attn, is_cross: bool, place_in_unet: str):
        if self.cur_att_layer >= self.num_uncond_att_layers:
            if LOW_RESOURCE:
                attn = self.forward(attn, is_cross, place_in_unet)
            else:
                h = attn.shape[0]
                attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
        self.cur_att_layer += 1
        if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
            self.cur_att_layer = 0
            self.cur_step += 1
            self.between_steps()
        return attn
    
    def reset(self):
        self.cur_step = 0
        self.cur_att_layer = 0

    def __init__(self):
        self.cur_step = 0
        self.num_att_layers = -1
        self.cur_att_layer = 0


class SpatialReplace(EmptyControl):
    
    def step_callback(self, x_t):
        if self.cur_step < self.stop_inject:
            b = x_t.shape[0]
            x_t = x_t[:1].expand(b, *x_t.shape[1:])
        return x_t

    def __init__(self, stop_inject: float):
        super(SpatialReplace, self).__init__()
        self.stop_inject = int((1 - stop_inject) * NUM_DDIM_STEPS)
        

class AttentionStore(AttentionControl):

    @staticmethod
    def get_empty_store():
        return {"down_cross": [], "mid_cross": [], "up_cross": [],
                "down_self": [],  "mid_self": [],  "up_self": []}

    def forward(self, attn, is_cross: bool, place_in_unet: str):
        key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
        if attn.shape[1] <= 32 ** 2:  # avoid memory overhead
            self.step_store[key].append(attn)
        return attn

    def between_steps(self):
        if len(self.attention_store) == 0:
            self.attention_store = self.step_store
        else:
            for key in self.attention_store:
                for i in range(len(self.attention_store[key])):
                    self.attention_store[key][i] += self.step_store[key][i]
        self.step_store = self.get_empty_store()

    def get_average_attention(self):
        average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
        return average_attention


    def reset(self):
        super(AttentionStore, self).reset()
        self.step_store = self.get_empty_store()
        self.attention_store = {}

    def __init__(self):
        super(AttentionStore, self).__init__()
        self.step_store = self.get_empty_store()
        self.attention_store = {}

        
class AttentionControlEdit(AttentionStore, abc.ABC):
    
    def step_callback(self, x_t):
        if self.local_blend is not None:
            x_t = self.local_blend(x_t, self.attention_store)
        return x_t
        
    def replace_self_attention(self, attn_base, att_replace, place_in_unet):
        if att_replace.shape[2] <= 32 ** 2:
            attn_base = attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
            return attn_base
        else:
            return att_replace
    
    @abc.abstractmethod
    def replace_cross_attention(self, attn_base, att_replace):
        raise NotImplementedError
    
    def forward(self, attn, is_cross: bool, place_in_unet: str):
        super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
        if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
            h = attn.shape[0] // (self.batch_size)
            attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
            attn_base, attn_repalce = attn[0], attn[1:]
            if is_cross:
                alpha_words = self.cross_replace_alpha[self.cur_step]
                attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce
                attn[1:] = attn_repalce_new
            else:
                attn[1:] = self.replace_self_attention(attn_base, attn_repalce, place_in_unet)
            attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
        return attn
    
    def __init__(self, prompts, num_steps: int,
                 cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
                 self_replace_steps: Union[float, Tuple[float, float]],
                 local_blend: Optional[LocalBlend]):
        super(AttentionControlEdit, self).__init__()
        self.batch_size = len(prompts)
        self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device)
        if type(self_replace_steps) is float:
            self_replace_steps = 0, self_replace_steps
        self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
        self.local_blend = local_blend

class AttentionReplace(AttentionControlEdit):

    def replace_cross_attention(self, attn_base, att_replace):
        return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper)
      
    def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
                 local_blend: Optional[LocalBlend] = None):
        super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
        self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device)
        

class AttentionRefine(AttentionControlEdit):

    def replace_cross_attention(self, attn_base, att_replace):
        attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
        attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
        # attn_replace = attn_replace / attn_replace.sum(-1, keepdims=True)
        return attn_replace

    def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
                 local_blend: Optional[LocalBlend] = None):
        super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
        self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer)
        self.mapper, alphas = self.mapper.to(device), alphas.to(device)
        self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])


class AttentionReweight(AttentionControlEdit):

    def replace_cross_attention(self, attn_base, att_replace):
        if self.prev_controller is not None:
            attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace)
        attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :]
        # attn_replace = attn_replace / attn_replace.sum(-1, keepdims=True)
        return attn_replace

    def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer,
                local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None):
        super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
        self.equalizer = equalizer.to(device)
        self.prev_controller = controller


def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float],
                  Tuple[float, ...]]):
    if type(word_select) is int or type(word_select) is str:
        word_select = (word_select,)
    equalizer = torch.ones(1, 77)
    
    for word, val in zip(word_select, values):
        inds = ptp_utils.get_word_inds(text, word, tokenizer)
        equalizer[:, inds] = val
    return equalizer

def aggregate_attention(attention_store: AttentionStore, res: int, from_where: List[str], is_cross: bool, select: int):
    out = []
    attention_maps = attention_store.get_average_attention()
    num_pixels = res ** 2
    for location in from_where:
        for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
            if item.shape[1] == num_pixels:
                cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select]
                out.append(cross_maps)
    out = torch.cat(out, dim=0)
    out = out.sum(0) / out.shape[0]
    return out.cpu()


def make_controller(prompts: List[str], is_replace_controller: bool, cross_replace_steps: Dict[str, float], self_replace_steps: float, blend_words=None, equilizer_params=None) -> AttentionControlEdit:
    if blend_words is None:
        lb = None
    else:
        lb = LocalBlend(prompts, blend_word)
    if is_replace_controller:
        controller = AttentionReplace(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb)
    else:
        controller = AttentionRefine(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb)
    if equilizer_params is not None:
        eq = get_equalizer(prompts[1], equilizer_params["words"], equilizer_params["values"])
        controller = AttentionReweight(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps,
                                       self_replace_steps=self_replace_steps, equalizer=eq, local_blend=lb, controller=controller)
    return controller


def show_cross_attention(attention_store: AttentionStore, res: int, from_where: List[str], select: int = 0):
    tokens = tokenizer.encode(prompts[select])
    decoder = tokenizer.decode
    attention_maps = aggregate_attention(attention_store, res, from_where, True, select)
    images = []
    for i in range(len(tokens)):
        image = attention_maps[:, :, i]
        image = 255 * image / image.max()
        image = image.unsqueeze(-1).expand(*image.shape, 3)
        image = image.numpy().astype(np.uint8)
        image = np.array(Image.fromarray(image).resize((256, 256)))
        image = ptp_utils.text_under_image(image, decoder(int(tokens[i])))
        images.append(image)
    ptp_utils.view_images(np.stack(images, axis=0))


class NullInversion:
    
    def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
        prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
        alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
        alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
        beta_prod_t = 1 - alpha_prod_t
        pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
        pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output
        prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
        return prev_sample
    
    def next_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
        timestep, next_timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep
        alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
        alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep]
        beta_prod_t = 1 - alpha_prod_t
        next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
        next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
        next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
        return next_sample
    
    def get_noise_pred_single(self, latents, t, context, normal_infer=True):
        noise_pred = self.model.unet(latents, t, encoder_hidden_states=context, normal_infer=normal_infer)["sample"]
        return noise_pred

    def get_noise_pred(self, latents, t, is_forward=True, context=None, normal_infer=True):
        latents_input = torch.cat([latents] * 2)
        if context is None:
            context = self.context
        guidance_scale = 1 if is_forward else self.guidance_scale
        noise_pred = self.model.unet(latents_input, t, encoder_hidden_states=context, normal_infer=normal_infer)["sample"]
        noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
        noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
        if is_forward:
            latents = self.next_step(noise_pred, t, latents)
        else:
            latents = self.prev_step(noise_pred, t, latents)
        return latents

    @torch.no_grad()
    def latent2image(self, latents, return_type='np'):
        latents = 1 / 0.18215 * latents.detach()
        image = self.model.vae.decode(latents)['sample']
        if return_type == 'np':
            image = (image / 2 + 0.5).clamp(0, 1)
            image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
            image = (image * 255).astype(np.uint8)
        return image

    @torch.no_grad()
    def image2latent(self, image):
        with torch.no_grad():
            if type(image) is Image:
                image = np.array(image)
            if type(image) is torch.Tensor and image.dim() == 4:
                latents = image
            else:
                image = torch.from_numpy(image).float() / 127.5 - 1
                image = image.permute(2, 0, 1).unsqueeze(0).to(device)
                latents = self.model.vae.encode(image)['latent_dist'].mean
                latents = latents * 0.18215
        return latents

    @torch.no_grad()
    def init_prompt(self, prompt: str):
        uncond_input = self.model.tokenizer(
            [""], padding="max_length", max_length=self.model.tokenizer.model_max_length,
            return_tensors="pt"
        )
        uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0]
        text_input = self.model.tokenizer(
            [prompt],
            padding="max_length",
            max_length=self.model.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        # (1, 77, 768)
        text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0]
        # (2, 77, 768)
        self.context = torch.cat([uncond_embeddings, text_embeddings])
        self.prompt = prompt

    @torch.no_grad()
    def ddim_loop(self, latent):
        uncond_embeddings, cond_embeddings = self.context.chunk(2)
        cond = cond_embeddings if self.null_inv_with_prompt else uncond_embeddings
        all_latent = [latent]
        latent = latent.clone().detach()
        for i in range(NUM_DDIM_STEPS):
            t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1]
            noise_pred = self.get_noise_pred_single(latent, t, cond, normal_infer=True)
            latent = self.next_step(noise_pred, t, latent)
            all_latent.append(latent)
        return all_latent

    @property
    def scheduler(self):
        return self.model.scheduler

    @torch.no_grad()
    def ddim_inversion(self, latent):
        ddim_latents = self.ddim_loop(latent)
        return ddim_latents

    def null_optimization(self, latents, null_inner_steps, epsilon, null_base_lr=1e-2):
        uncond_embeddings, cond_embeddings = self.context.chunk(2)
        uncond_embeddings_list = []
        latent_cur = latents[-1]
        bar = tqdm(total=null_inner_steps * NUM_DDIM_STEPS)
        for i in range(NUM_DDIM_STEPS):
            uncond_embeddings = uncond_embeddings.clone().detach()
            uncond_embeddings.requires_grad = True
            optimizer = Adam([uncond_embeddings], lr=null_base_lr * (1. - i / 100.))
            latent_prev = latents[len(latents) - i - 2]
            t = self.model.scheduler.timesteps[i]
            with torch.no_grad():
                noise_pred_cond = self.get_noise_pred_single(latent_cur, t, cond_embeddings, normal_infer=self.null_normal_infer)
            for j in range(null_inner_steps):
                noise_pred_uncond = self.get_noise_pred_single(latent_cur, t, uncond_embeddings, normal_infer=self.null_normal_infer)
                noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
                latents_prev_rec = self.prev_step(noise_pred, t, latent_cur)
                loss = nnf.mse_loss(latents_prev_rec, latent_prev)
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
                assert not torch.isnan(uncond_embeddings.abs().mean())
                loss_item = loss.item()
                bar.update()
                if loss_item < epsilon + i * 2e-5:
                    break
            for j in range(j + 1, null_inner_steps):
                bar.update()
            uncond_embeddings_list.append(uncond_embeddings[:1].detach())
            with torch.no_grad():
                context = torch.cat([uncond_embeddings, cond_embeddings])
                latent_cur = self.get_noise_pred(latent_cur, t, False, context, normal_infer=self.null_normal_infer)
        bar.close()
        return uncond_embeddings_list
    
    def invert(self, latents: torch.Tensor, prompt: str, null_inner_steps=10, early_stop_epsilon=1e-5, verbose=False, null_base_lr=1e-2):
        self.init_prompt(prompt)
        if verbose:
            print("DDIM inversion...")
        ddim_latents = self.ddim_inversion(latents.to(torch.float32))
        if verbose:
            print("Null-text optimization...")
        uncond_embeddings = self.null_optimization(ddim_latents, null_inner_steps, early_stop_epsilon, null_base_lr=null_base_lr)
        return ddim_latents[-1], uncond_embeddings
        
    
    def __init__(self, model, guidance_scale, null_inv_with_prompt, null_normal_infer=True):
        self.null_normal_infer = null_normal_infer
        self.null_inv_with_prompt = null_inv_with_prompt
        self.guidance_scale = guidance_scale
        self.model = model
        self.tokenizer = self.model.tokenizer
        self.model.scheduler.set_timesteps(NUM_DDIM_STEPS)
        self.prompt = None
        self.context = None