Spaces:
Runtime error
Runtime error
# Copyright 2022 Google LLC | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Optional, Union, Tuple, List, Callable, Dict | |
from tqdm import tqdm | |
import torch | |
import torch.nn.functional as nnf | |
import numpy as np | |
import abc | |
from . import ptp_utils | |
from . import seq_aligner | |
import shutil | |
from torch.optim.adam import Adam | |
from PIL import Image | |
LOW_RESOURCE = False | |
NUM_DDIM_STEPS = 50 | |
MAX_NUM_WORDS = 77 | |
device = torch.device('cuda') | |
from transformers import CLIPTextModel, CLIPTokenizer | |
pretrained_model_path = "checkpoints/CompVis/stable-diffusion-v1-4/" | |
ldm_stable = None | |
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") | |
class LocalBlend: | |
def get_mask(self, maps, alpha, use_pool): | |
k = 1 | |
maps = (maps * alpha).sum(-1).mean(1) | |
if use_pool: | |
maps = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 +1), (1, 1), padding=(k, k)) | |
mask = nnf.interpolate(maps, size=(x_t.shape[2:])) | |
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0] | |
mask = mask.gt(self.th[1-int(use_pool)]) | |
mask = mask[:1] + mask | |
return mask | |
def __call__(self, x_t, attention_store): | |
self.counter += 1 | |
if self.counter > self.start_blend: | |
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3] | |
maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, MAX_NUM_WORDS) for item in maps] | |
maps = torch.cat(maps, dim=1) | |
mask = self.get_mask(maps, self.alpha_layers, True) | |
if self.substruct_layers is not None: | |
maps_sub = ~self.get_mask(maps, self.substruct_layers, False) | |
mask = mask * maps_sub | |
mask = mask.float() | |
x_t = x_t[:1] + mask * (x_t - x_t[:1]) | |
return x_t | |
def __init__(self, prompts: List[str], words: List[List[str]], substruct_words=None, start_blend=0.2, th=(.3, .3)): | |
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS) | |
for i, (prompt, words_) in enumerate(zip(prompts, words)): | |
if type(words_) is str: | |
words_ = [words_] | |
for word in words_: | |
ind = ptp_utils.get_word_inds(prompt, word, tokenizer) | |
alpha_layers[i, :, :, :, :, ind] = 1 | |
if substruct_words is not None: | |
substruct_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS) | |
for i, (prompt, words_) in enumerate(zip(prompts, substruct_words)): | |
if type(words_) is str: | |
words_ = [words_] | |
for word in words_: | |
ind = ptp_utils.get_word_inds(prompt, word, tokenizer) | |
substruct_layers[i, :, :, :, :, ind] = 1 | |
self.substruct_layers = substruct_layers.to(device) | |
else: | |
self.substruct_layers = None | |
self.alpha_layers = alpha_layers.to(device) | |
self.start_blend = int(start_blend * NUM_DDIM_STEPS) | |
self.counter = 0 | |
self.th=th | |
class EmptyControl: | |
def step_callback(self, x_t): | |
return x_t | |
def between_steps(self): | |
return | |
def __call__(self, attn, is_cross: bool, place_in_unet: str): | |
return attn | |
class AttentionControl(abc.ABC): | |
def step_callback(self, x_t): | |
return x_t | |
def between_steps(self): | |
return | |
def num_uncond_att_layers(self): | |
return self.num_att_layers if LOW_RESOURCE else 0 | |
def forward (self, attn, is_cross: bool, place_in_unet: str): | |
raise NotImplementedError | |
def __call__(self, attn, is_cross: bool, place_in_unet: str): | |
if self.cur_att_layer >= self.num_uncond_att_layers: | |
if LOW_RESOURCE: | |
attn = self.forward(attn, is_cross, place_in_unet) | |
else: | |
h = attn.shape[0] | |
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet) | |
self.cur_att_layer += 1 | |
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers: | |
self.cur_att_layer = 0 | |
self.cur_step += 1 | |
self.between_steps() | |
return attn | |
def reset(self): | |
self.cur_step = 0 | |
self.cur_att_layer = 0 | |
def __init__(self): | |
self.cur_step = 0 | |
self.num_att_layers = -1 | |
self.cur_att_layer = 0 | |
class SpatialReplace(EmptyControl): | |
def step_callback(self, x_t): | |
if self.cur_step < self.stop_inject: | |
b = x_t.shape[0] | |
x_t = x_t[:1].expand(b, *x_t.shape[1:]) | |
return x_t | |
def __init__(self, stop_inject: float): | |
super(SpatialReplace, self).__init__() | |
self.stop_inject = int((1 - stop_inject) * NUM_DDIM_STEPS) | |
class AttentionStore(AttentionControl): | |
def get_empty_store(): | |
return {"down_cross": [], "mid_cross": [], "up_cross": [], | |
"down_self": [], "mid_self": [], "up_self": []} | |
def forward(self, attn, is_cross: bool, place_in_unet: str): | |
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" | |
if attn.shape[1] <= 32 ** 2: # avoid memory overhead | |
self.step_store[key].append(attn) | |
return attn | |
def between_steps(self): | |
if len(self.attention_store) == 0: | |
self.attention_store = self.step_store | |
else: | |
for key in self.attention_store: | |
for i in range(len(self.attention_store[key])): | |
self.attention_store[key][i] += self.step_store[key][i] | |
self.step_store = self.get_empty_store() | |
def get_average_attention(self): | |
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store} | |
return average_attention | |
def reset(self): | |
super(AttentionStore, self).reset() | |
self.step_store = self.get_empty_store() | |
self.attention_store = {} | |
def __init__(self): | |
super(AttentionStore, self).__init__() | |
self.step_store = self.get_empty_store() | |
self.attention_store = {} | |
class AttentionControlEdit(AttentionStore, abc.ABC): | |
def step_callback(self, x_t): | |
if self.local_blend is not None: | |
x_t = self.local_blend(x_t, self.attention_store) | |
return x_t | |
def replace_self_attention(self, attn_base, att_replace, place_in_unet): | |
if att_replace.shape[2] <= 32 ** 2: | |
attn_base = attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape) | |
return attn_base | |
else: | |
return att_replace | |
def replace_cross_attention(self, attn_base, att_replace): | |
raise NotImplementedError | |
def forward(self, attn, is_cross: bool, place_in_unet: str): | |
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet) | |
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]): | |
h = attn.shape[0] // (self.batch_size) | |
attn = attn.reshape(self.batch_size, h, *attn.shape[1:]) | |
attn_base, attn_repalce = attn[0], attn[1:] | |
if is_cross: | |
alpha_words = self.cross_replace_alpha[self.cur_step] | |
attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce | |
attn[1:] = attn_repalce_new | |
else: | |
attn[1:] = self.replace_self_attention(attn_base, attn_repalce, place_in_unet) | |
attn = attn.reshape(self.batch_size * h, *attn.shape[2:]) | |
return attn | |
def __init__(self, prompts, num_steps: int, | |
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]], | |
self_replace_steps: Union[float, Tuple[float, float]], | |
local_blend: Optional[LocalBlend]): | |
super(AttentionControlEdit, self).__init__() | |
self.batch_size = len(prompts) | |
self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device) | |
if type(self_replace_steps) is float: | |
self_replace_steps = 0, self_replace_steps | |
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1]) | |
self.local_blend = local_blend | |
class AttentionReplace(AttentionControlEdit): | |
def replace_cross_attention(self, attn_base, att_replace): | |
return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper) | |
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, | |
local_blend: Optional[LocalBlend] = None): | |
super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) | |
self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device) | |
class AttentionRefine(AttentionControlEdit): | |
def replace_cross_attention(self, attn_base, att_replace): | |
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3) | |
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas) | |
# attn_replace = attn_replace / attn_replace.sum(-1, keepdims=True) | |
return attn_replace | |
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, | |
local_blend: Optional[LocalBlend] = None): | |
super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) | |
self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer) | |
self.mapper, alphas = self.mapper.to(device), alphas.to(device) | |
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1]) | |
class AttentionReweight(AttentionControlEdit): | |
def replace_cross_attention(self, attn_base, att_replace): | |
if self.prev_controller is not None: | |
attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace) | |
attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :] | |
# attn_replace = attn_replace / attn_replace.sum(-1, keepdims=True) | |
return attn_replace | |
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer, | |
local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None): | |
super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) | |
self.equalizer = equalizer.to(device) | |
self.prev_controller = controller | |
def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float], | |
Tuple[float, ...]]): | |
if type(word_select) is int or type(word_select) is str: | |
word_select = (word_select,) | |
equalizer = torch.ones(1, 77) | |
for word, val in zip(word_select, values): | |
inds = ptp_utils.get_word_inds(text, word, tokenizer) | |
equalizer[:, inds] = val | |
return equalizer | |
def aggregate_attention(attention_store: AttentionStore, res: int, from_where: List[str], is_cross: bool, select: int): | |
out = [] | |
attention_maps = attention_store.get_average_attention() | |
num_pixels = res ** 2 | |
for location in from_where: | |
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: | |
if item.shape[1] == num_pixels: | |
cross_maps = item.reshape(len(prompts), -1, res, res, item.shape[-1])[select] | |
out.append(cross_maps) | |
out = torch.cat(out, dim=0) | |
out = out.sum(0) / out.shape[0] | |
return out.cpu() | |
def make_controller(prompts: List[str], is_replace_controller: bool, cross_replace_steps: Dict[str, float], self_replace_steps: float, blend_words=None, equilizer_params=None) -> AttentionControlEdit: | |
if blend_words is None: | |
lb = None | |
else: | |
lb = LocalBlend(prompts, blend_word) | |
if is_replace_controller: | |
controller = AttentionReplace(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb) | |
else: | |
controller = AttentionRefine(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb) | |
if equilizer_params is not None: | |
eq = get_equalizer(prompts[1], equilizer_params["words"], equilizer_params["values"]) | |
controller = AttentionReweight(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, | |
self_replace_steps=self_replace_steps, equalizer=eq, local_blend=lb, controller=controller) | |
return controller | |
def show_cross_attention(attention_store: AttentionStore, res: int, from_where: List[str], select: int = 0): | |
tokens = tokenizer.encode(prompts[select]) | |
decoder = tokenizer.decode | |
attention_maps = aggregate_attention(attention_store, res, from_where, True, select) | |
images = [] | |
for i in range(len(tokens)): | |
image = attention_maps[:, :, i] | |
image = 255 * image / image.max() | |
image = image.unsqueeze(-1).expand(*image.shape, 3) | |
image = image.numpy().astype(np.uint8) | |
image = np.array(Image.fromarray(image).resize((256, 256))) | |
image = ptp_utils.text_under_image(image, decoder(int(tokens[i]))) | |
images.append(image) | |
ptp_utils.view_images(np.stack(images, axis=0)) | |
class NullInversion: | |
def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]): | |
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps | |
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] | |
alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod | |
beta_prod_t = 1 - alpha_prod_t | |
pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 | |
pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output | |
prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction | |
return prev_sample | |
def next_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]): | |
timestep, next_timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep | |
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod | |
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep] | |
beta_prod_t = 1 - alpha_prod_t | |
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 | |
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output | |
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction | |
return next_sample | |
def get_noise_pred_single(self, latents, t, context, normal_infer=True): | |
noise_pred = self.model.unet(latents, t, encoder_hidden_states=context, normal_infer=normal_infer)["sample"] | |
return noise_pred | |
def get_noise_pred(self, latents, t, is_forward=True, context=None, normal_infer=True): | |
latents_input = torch.cat([latents] * 2) | |
if context is None: | |
context = self.context | |
guidance_scale = 1 if is_forward else self.guidance_scale | |
noise_pred = self.model.unet(latents_input, t, encoder_hidden_states=context, normal_infer=normal_infer)["sample"] | |
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) | |
if is_forward: | |
latents = self.next_step(noise_pred, t, latents) | |
else: | |
latents = self.prev_step(noise_pred, t, latents) | |
return latents | |
def latent2image(self, latents, return_type='np'): | |
latents = 1 / 0.18215 * latents.detach() | |
image = self.model.vae.decode(latents)['sample'] | |
if return_type == 'np': | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy()[0] | |
image = (image * 255).astype(np.uint8) | |
return image | |
def image2latent(self, image): | |
with torch.no_grad(): | |
if type(image) is Image: | |
image = np.array(image) | |
if type(image) is torch.Tensor and image.dim() == 4: | |
latents = image | |
else: | |
image = torch.from_numpy(image).float() / 127.5 - 1 | |
image = image.permute(2, 0, 1).unsqueeze(0).to(device) | |
latents = self.model.vae.encode(image)['latent_dist'].mean | |
latents = latents * 0.18215 | |
return latents | |
def init_prompt(self, prompt: str): | |
uncond_input = self.model.tokenizer( | |
[""], padding="max_length", max_length=self.model.tokenizer.model_max_length, | |
return_tensors="pt" | |
) | |
uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0] | |
text_input = self.model.tokenizer( | |
[prompt], | |
padding="max_length", | |
max_length=self.model.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
# (1, 77, 768) | |
text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0] | |
# (2, 77, 768) | |
self.context = torch.cat([uncond_embeddings, text_embeddings]) | |
self.prompt = prompt | |
def ddim_loop(self, latent): | |
uncond_embeddings, cond_embeddings = self.context.chunk(2) | |
cond = cond_embeddings if self.null_inv_with_prompt else uncond_embeddings | |
all_latent = [latent] | |
latent = latent.clone().detach() | |
for i in range(NUM_DDIM_STEPS): | |
t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1] | |
noise_pred = self.get_noise_pred_single(latent, t, cond, normal_infer=True) | |
latent = self.next_step(noise_pred, t, latent) | |
all_latent.append(latent) | |
return all_latent | |
def scheduler(self): | |
return self.model.scheduler | |
def ddim_inversion(self, latent): | |
ddim_latents = self.ddim_loop(latent) | |
return ddim_latents | |
def null_optimization(self, latents, null_inner_steps, epsilon, null_base_lr=1e-2): | |
uncond_embeddings, cond_embeddings = self.context.chunk(2) | |
uncond_embeddings_list = [] | |
latent_cur = latents[-1] | |
bar = tqdm(total=null_inner_steps * NUM_DDIM_STEPS) | |
for i in range(NUM_DDIM_STEPS): | |
uncond_embeddings = uncond_embeddings.clone().detach() | |
uncond_embeddings.requires_grad = True | |
optimizer = Adam([uncond_embeddings], lr=null_base_lr * (1. - i / 100.)) | |
latent_prev = latents[len(latents) - i - 2] | |
t = self.model.scheduler.timesteps[i] | |
with torch.no_grad(): | |
noise_pred_cond = self.get_noise_pred_single(latent_cur, t, cond_embeddings, normal_infer=self.null_normal_infer) | |
for j in range(null_inner_steps): | |
noise_pred_uncond = self.get_noise_pred_single(latent_cur, t, uncond_embeddings, normal_infer=self.null_normal_infer) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond) | |
latents_prev_rec = self.prev_step(noise_pred, t, latent_cur) | |
loss = nnf.mse_loss(latents_prev_rec, latent_prev) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
assert not torch.isnan(uncond_embeddings.abs().mean()) | |
loss_item = loss.item() | |
bar.update() | |
if loss_item < epsilon + i * 2e-5: | |
break | |
for j in range(j + 1, null_inner_steps): | |
bar.update() | |
uncond_embeddings_list.append(uncond_embeddings[:1].detach()) | |
with torch.no_grad(): | |
context = torch.cat([uncond_embeddings, cond_embeddings]) | |
latent_cur = self.get_noise_pred(latent_cur, t, False, context, normal_infer=self.null_normal_infer) | |
bar.close() | |
return uncond_embeddings_list | |
def invert(self, latents: torch.Tensor, prompt: str, null_inner_steps=10, early_stop_epsilon=1e-5, verbose=False, null_base_lr=1e-2): | |
self.init_prompt(prompt) | |
if verbose: | |
print("DDIM inversion...") | |
ddim_latents = self.ddim_inversion(latents.to(torch.float32)) | |
if verbose: | |
print("Null-text optimization...") | |
uncond_embeddings = self.null_optimization(ddim_latents, null_inner_steps, early_stop_epsilon, null_base_lr=null_base_lr) | |
return ddim_latents[-1], uncond_embeddings | |
def __init__(self, model, guidance_scale, null_inv_with_prompt, null_normal_infer=True): | |
self.null_normal_infer = null_normal_infer | |
self.null_inv_with_prompt = null_inv_with_prompt | |
self.guidance_scale = guidance_scale | |
self.model = model | |
self.tokenizer = self.model.tokenizer | |
self.model.scheduler.set_timesteps(NUM_DDIM_STEPS) | |
self.prompt = None | |
self.context = None | |