|
import gradio as gr |
|
from transformers import PreTrainedTokenizerFast, BartForConditionalGeneration |
|
|
|
model_name = 'ainize/kobart-news' |
|
|
|
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_name) |
|
model = BartForConditionalGeneration.from_pretrained(model_name) |
|
|
|
def summ(txt): |
|
input_ids = tokenizer.encode(txt, return_tensors="pt") |
|
summary_text_ids = model.generate( |
|
input_ids=input_ids, |
|
bos_token_id=model.config.bos_token_id, |
|
eos_token_id=model.config.eos_token_id, |
|
length_penalty=2.0, |
|
max_length=142, |
|
min_length=56, |
|
num_beams=4, |
|
) |
|
return tokenizer.decode(summary_text_ids[0], skip_special_tokens=True) |
|
|
|
interface = gr.Interface(summ, [gr.Textbox(label = 'original text')], |
|
[gr.Textbokx(label = 'summary')]) |
|
|
|
interface.launch(share = True) |