my_prac1 / app.py
BG98's picture
Create app.py
854ea29
raw
history blame
804 Bytes
import gradio as gr
from transformers import PreTrainedTokenizerFast, BartForConditionalGeneration
model_name = 'ainize/kobart-news'
tokenizer = PreTrainedTokenizerFast.from_pretrained(model_name)
model = BartForConditionalGeneration.from_pretrained(model_name)
def summ(txt):
input_ids = tokenizer.encode(txt, return_tensors="pt")
summary_text_ids = model.generate(
input_ids=input_ids,
bos_token_id=model.config.bos_token_id,
eos_token_id=model.config.eos_token_id,
length_penalty=2.0,
max_length=142,
min_length=56,
num_beams=4,
)
return tokenizer.decode(summary_text_ids[0], skip_special_tokens=True)
interface = gr.Interface(summ, [gr.Textbox(label = 'original text')],
[gr.Textbokx(label = 'summary')])
interface.launch(share = True)