Spaces:
Runtime error
Runtime error
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# `TemporalConvLayer` Copyright 2023 Alibaba DAMO-VILAB, The ModelScope Team and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from functools import partial | |
from typing import Optional | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from .attention import AdaGroupNorm | |
class Upsample1D(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
Parameters: | |
channels: channels in the inputs and outputs. | |
use_conv: a bool determining if a convolution is applied. | |
use_conv_transpose: | |
out_channels: | |
""" | |
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_conv_transpose = use_conv_transpose | |
self.name = name | |
self.conv = None | |
if use_conv_transpose: | |
self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1) | |
elif use_conv: | |
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
if self.use_conv_transpose: | |
return self.conv(x) | |
x = F.interpolate(x, scale_factor=2.0, mode="nearest") | |
if self.use_conv: | |
x = self.conv(x) | |
return x | |
class Downsample1D(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
Parameters: | |
channels: channels in the inputs and outputs. | |
use_conv: a bool determining if a convolution is applied. | |
out_channels: | |
padding: | |
""" | |
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.padding = padding | |
stride = 2 | |
self.name = name | |
if use_conv: | |
self.conv = nn.Conv1d(self.channels, self.out_channels, 3, stride=stride, padding=padding) | |
else: | |
assert self.channels == self.out_channels | |
self.conv = nn.AvgPool1d(kernel_size=stride, stride=stride) | |
def forward(self, x): | |
assert x.shape[1] == self.channels | |
return self.conv(x) | |
class Upsample2D(nn.Module): | |
""" | |
An upsampling layer with an optional convolution. | |
Parameters: | |
channels: channels in the inputs and outputs. | |
use_conv: a bool determining if a convolution is applied. | |
use_conv_transpose: | |
out_channels: | |
""" | |
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.use_conv_transpose = use_conv_transpose | |
self.name = name | |
conv = None | |
if use_conv_transpose: | |
conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1) | |
elif use_conv: | |
conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1) | |
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed | |
if name == "conv": | |
self.conv = conv | |
else: | |
self.Conv2d_0 = conv | |
def forward(self, hidden_states, output_size=None): | |
assert hidden_states.shape[1] == self.channels | |
if self.use_conv_transpose: | |
return self.conv(hidden_states) | |
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 | |
# TODO(Suraj): Remove this cast once the issue is fixed in PyTorch | |
# https://github.com/pytorch/pytorch/issues/86679 | |
dtype = hidden_states.dtype | |
if dtype == torch.bfloat16: | |
hidden_states = hidden_states.to(torch.float32) | |
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
if hidden_states.shape[0] >= 64: | |
hidden_states = hidden_states.contiguous() | |
# if `output_size` is passed we force the interpolation output | |
# size and do not make use of `scale_factor=2` | |
if output_size is None: | |
hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") | |
else: | |
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") | |
# If the input is bfloat16, we cast back to bfloat16 | |
if dtype == torch.bfloat16: | |
hidden_states = hidden_states.to(dtype) | |
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed | |
if self.use_conv: | |
if self.name == "conv": | |
hidden_states = self.conv(hidden_states) | |
else: | |
hidden_states = self.Conv2d_0(hidden_states) | |
return hidden_states | |
class Downsample2D(nn.Module): | |
""" | |
A downsampling layer with an optional convolution. | |
Parameters: | |
channels: channels in the inputs and outputs. | |
use_conv: a bool determining if a convolution is applied. | |
out_channels: | |
padding: | |
""" | |
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"): | |
super().__init__() | |
self.channels = channels | |
self.out_channels = out_channels or channels | |
self.use_conv = use_conv | |
self.padding = padding | |
stride = 2 | |
self.name = name | |
if use_conv: | |
conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding) | |
else: | |
assert self.channels == self.out_channels | |
conv = nn.AvgPool2d(kernel_size=stride, stride=stride) | |
# TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed | |
if name == "conv": | |
self.Conv2d_0 = conv | |
self.conv = conv | |
elif name == "Conv2d_0": | |
self.conv = conv | |
else: | |
self.conv = conv | |
def forward(self, hidden_states): | |
assert hidden_states.shape[1] == self.channels | |
if self.use_conv and self.padding == 0: | |
pad = (0, 1, 0, 1) | |
hidden_states = F.pad(hidden_states, pad, mode="constant", value=0) | |
assert hidden_states.shape[1] == self.channels | |
hidden_states = self.conv(hidden_states) | |
return hidden_states | |
class FirUpsample2D(nn.Module): | |
def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)): | |
super().__init__() | |
out_channels = out_channels if out_channels else channels | |
if use_conv: | |
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) | |
self.use_conv = use_conv | |
self.fir_kernel = fir_kernel | |
self.out_channels = out_channels | |
def _upsample_2d(self, hidden_states, weight=None, kernel=None, factor=2, gain=1): | |
"""Fused `upsample_2d()` followed by `Conv2d()`. | |
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more | |
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of | |
arbitrary order. | |
Args: | |
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. | |
weight: Weight tensor of the shape `[filterH, filterW, inChannels, | |
outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`. | |
kernel: FIR filter of the shape `[firH, firW]` or `[firN]` | |
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. | |
factor: Integer upsampling factor (default: 2). | |
gain: Scaling factor for signal magnitude (default: 1.0). | |
Returns: | |
output: Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same | |
datatype as `hidden_states`. | |
""" | |
assert isinstance(factor, int) and factor >= 1 | |
# Setup filter kernel. | |
if kernel is None: | |
kernel = [1] * factor | |
# setup kernel | |
kernel = torch.tensor(kernel, dtype=torch.float32) | |
if kernel.ndim == 1: | |
kernel = torch.outer(kernel, kernel) | |
kernel /= torch.sum(kernel) | |
kernel = kernel * (gain * (factor**2)) | |
if self.use_conv: | |
convH = weight.shape[2] | |
convW = weight.shape[3] | |
inC = weight.shape[1] | |
pad_value = (kernel.shape[0] - factor) - (convW - 1) | |
stride = (factor, factor) | |
# Determine data dimensions. | |
output_shape = ( | |
(hidden_states.shape[2] - 1) * factor + convH, | |
(hidden_states.shape[3] - 1) * factor + convW, | |
) | |
output_padding = ( | |
output_shape[0] - (hidden_states.shape[2] - 1) * stride[0] - convH, | |
output_shape[1] - (hidden_states.shape[3] - 1) * stride[1] - convW, | |
) | |
assert output_padding[0] >= 0 and output_padding[1] >= 0 | |
num_groups = hidden_states.shape[1] // inC | |
# Transpose weights. | |
weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW)) | |
weight = torch.flip(weight, dims=[3, 4]).permute(0, 2, 1, 3, 4) | |
weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW)) | |
inverse_conv = F.conv_transpose2d( | |
hidden_states, weight, stride=stride, output_padding=output_padding, padding=0 | |
) | |
output = upfirdn2d_native( | |
inverse_conv, | |
torch.tensor(kernel, device=inverse_conv.device), | |
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2 + 1), | |
) | |
else: | |
pad_value = kernel.shape[0] - factor | |
output = upfirdn2d_native( | |
hidden_states, | |
torch.tensor(kernel, device=hidden_states.device), | |
up=factor, | |
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2), | |
) | |
return output | |
def forward(self, hidden_states): | |
if self.use_conv: | |
height = self._upsample_2d(hidden_states, self.Conv2d_0.weight, kernel=self.fir_kernel) | |
height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1) | |
else: | |
height = self._upsample_2d(hidden_states, kernel=self.fir_kernel, factor=2) | |
return height | |
class FirDownsample2D(nn.Module): | |
def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)): | |
super().__init__() | |
out_channels = out_channels if out_channels else channels | |
if use_conv: | |
self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1) | |
self.fir_kernel = fir_kernel | |
self.use_conv = use_conv | |
self.out_channels = out_channels | |
def _downsample_2d(self, hidden_states, weight=None, kernel=None, factor=2, gain=1): | |
"""Fused `Conv2d()` followed by `downsample_2d()`. | |
Padding is performed only once at the beginning, not between the operations. The fused op is considerably more | |
efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of | |
arbitrary order. | |
Args: | |
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. | |
weight: | |
Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be | |
performed by `inChannels = x.shape[0] // numGroups`. | |
kernel: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * | |
factor`, which corresponds to average pooling. | |
factor: Integer downsampling factor (default: 2). | |
gain: Scaling factor for signal magnitude (default: 1.0). | |
Returns: | |
output: Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and | |
same datatype as `x`. | |
""" | |
assert isinstance(factor, int) and factor >= 1 | |
if kernel is None: | |
kernel = [1] * factor | |
# setup kernel | |
kernel = torch.tensor(kernel, dtype=torch.float32) | |
if kernel.ndim == 1: | |
kernel = torch.outer(kernel, kernel) | |
kernel /= torch.sum(kernel) | |
kernel = kernel * gain | |
if self.use_conv: | |
_, _, convH, convW = weight.shape | |
pad_value = (kernel.shape[0] - factor) + (convW - 1) | |
stride_value = [factor, factor] | |
upfirdn_input = upfirdn2d_native( | |
hidden_states, | |
torch.tensor(kernel, device=hidden_states.device), | |
pad=((pad_value + 1) // 2, pad_value // 2), | |
) | |
output = F.conv2d(upfirdn_input, weight, stride=stride_value, padding=0) | |
else: | |
pad_value = kernel.shape[0] - factor | |
output = upfirdn2d_native( | |
hidden_states, | |
torch.tensor(kernel, device=hidden_states.device), | |
down=factor, | |
pad=((pad_value + 1) // 2, pad_value // 2), | |
) | |
return output | |
def forward(self, hidden_states): | |
if self.use_conv: | |
downsample_input = self._downsample_2d(hidden_states, weight=self.Conv2d_0.weight, kernel=self.fir_kernel) | |
hidden_states = downsample_input + self.Conv2d_0.bias.reshape(1, -1, 1, 1) | |
else: | |
hidden_states = self._downsample_2d(hidden_states, kernel=self.fir_kernel, factor=2) | |
return hidden_states | |
# downsample/upsample layer used in k-upscaler, might be able to use FirDownsample2D/DirUpsample2D instead | |
class KDownsample2D(nn.Module): | |
def __init__(self, pad_mode="reflect"): | |
super().__init__() | |
self.pad_mode = pad_mode | |
kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) | |
self.pad = kernel_1d.shape[1] // 2 - 1 | |
self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False) | |
def forward(self, x): | |
x = F.pad(x, (self.pad,) * 4, self.pad_mode) | |
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0], self.kernel.shape[1]]) | |
indices = torch.arange(x.shape[1], device=x.device) | |
weight[indices, indices] = self.kernel.to(weight) | |
return F.conv2d(x, weight, stride=2) | |
class KUpsample2D(nn.Module): | |
def __init__(self, pad_mode="reflect"): | |
super().__init__() | |
self.pad_mode = pad_mode | |
kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) * 2 | |
self.pad = kernel_1d.shape[1] // 2 - 1 | |
self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False) | |
def forward(self, x): | |
x = F.pad(x, ((self.pad + 1) // 2,) * 4, self.pad_mode) | |
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0], self.kernel.shape[1]]) | |
indices = torch.arange(x.shape[1], device=x.device) | |
weight[indices, indices] = self.kernel.to(weight) | |
return F.conv_transpose2d(x, weight, stride=2, padding=self.pad * 2 + 1) | |
class ResnetBlock2D(nn.Module): | |
r""" | |
A Resnet block. | |
Parameters: | |
in_channels (`int`): The number of channels in the input. | |
out_channels (`int`, *optional*, default to be `None`): | |
The number of output channels for the first conv2d layer. If None, same as `in_channels`. | |
dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use. | |
temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding. | |
groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer. | |
groups_out (`int`, *optional*, default to None): | |
The number of groups to use for the second normalization layer. if set to None, same as `groups`. | |
eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization. | |
non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use. | |
time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config. | |
By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or | |
"ada_group" for a stronger conditioning with scale and shift. | |
kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see | |
[`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`]. | |
output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output. | |
use_in_shortcut (`bool`, *optional*, default to `True`): | |
If `True`, add a 1x1 nn.conv2d layer for skip-connection. | |
up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer. | |
down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer. | |
conv_shortcut_bias (`bool`, *optional*, default to `True`): If `True`, adds a learnable bias to the | |
`conv_shortcut` output. | |
conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output. | |
If None, same as `out_channels`. | |
""" | |
def __init__( | |
self, | |
*, | |
in_channels, | |
out_channels=None, | |
conv_shortcut=False, | |
dropout=0.0, | |
temb_channels=512, | |
groups=32, | |
groups_out=None, | |
pre_norm=True, | |
eps=1e-6, | |
non_linearity="swish", | |
time_embedding_norm="default", # default, scale_shift, ada_group | |
kernel=None, | |
output_scale_factor=1.0, | |
use_in_shortcut=None, | |
up=False, | |
down=False, | |
conv_shortcut_bias: bool = True, | |
conv_2d_out_channels: Optional[int] = None, | |
): | |
super().__init__() | |
self.pre_norm = pre_norm | |
self.pre_norm = True | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.up = up | |
self.down = down | |
self.output_scale_factor = output_scale_factor | |
self.time_embedding_norm = time_embedding_norm | |
if groups_out is None: | |
groups_out = groups | |
if self.time_embedding_norm == "ada_group": | |
self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps) | |
else: | |
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True) | |
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) | |
if temb_channels is not None: | |
if self.time_embedding_norm == "default": | |
self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels) | |
elif self.time_embedding_norm == "scale_shift": | |
self.time_emb_proj = torch.nn.Linear(temb_channels, 2 * out_channels) | |
elif self.time_embedding_norm == "ada_group": | |
self.time_emb_proj = None | |
else: | |
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ") | |
else: | |
self.time_emb_proj = None | |
if self.time_embedding_norm == "ada_group": | |
self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps) | |
else: | |
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True) | |
self.dropout = torch.nn.Dropout(dropout) | |
conv_2d_out_channels = conv_2d_out_channels or out_channels | |
self.conv2 = torch.nn.Conv2d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1) | |
if non_linearity == "swish": | |
self.nonlinearity = lambda x: F.silu(x) | |
elif non_linearity == "mish": | |
self.nonlinearity = nn.Mish() | |
elif non_linearity == "silu": | |
self.nonlinearity = nn.SiLU() | |
elif non_linearity == "gelu": | |
self.nonlinearity = nn.GELU() | |
self.upsample = self.downsample = None | |
if self.up: | |
if kernel == "fir": | |
fir_kernel = (1, 3, 3, 1) | |
self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel) | |
elif kernel == "sde_vp": | |
self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest") | |
else: | |
self.upsample = Upsample2D(in_channels, use_conv=False) | |
elif self.down: | |
if kernel == "fir": | |
fir_kernel = (1, 3, 3, 1) | |
self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel) | |
elif kernel == "sde_vp": | |
self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2) | |
else: | |
self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op") | |
self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut | |
self.conv_shortcut = None | |
if self.use_in_shortcut: | |
self.conv_shortcut = torch.nn.Conv2d( | |
in_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias | |
) | |
def forward(self, input_tensor, temb): | |
hidden_states = input_tensor | |
if self.time_embedding_norm == "ada_group": | |
hidden_states = self.norm1(hidden_states, temb) | |
else: | |
hidden_states = self.norm1(hidden_states) | |
hidden_states = self.nonlinearity(hidden_states) | |
if self.upsample is not None: | |
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 | |
if hidden_states.shape[0] >= 64: | |
input_tensor = input_tensor.contiguous() | |
hidden_states = hidden_states.contiguous() | |
input_tensor = self.upsample(input_tensor) | |
hidden_states = self.upsample(hidden_states) | |
elif self.downsample is not None: | |
input_tensor = self.downsample(input_tensor) | |
hidden_states = self.downsample(hidden_states) | |
hidden_states = self.conv1(hidden_states) | |
if self.time_emb_proj is not None: | |
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None] | |
if temb is not None and self.time_embedding_norm == "default": | |
hidden_states = hidden_states + temb | |
if self.time_embedding_norm == "ada_group": | |
hidden_states = self.norm2(hidden_states, temb) | |
else: | |
hidden_states = self.norm2(hidden_states) | |
if temb is not None and self.time_embedding_norm == "scale_shift": | |
scale, shift = torch.chunk(temb, 2, dim=1) | |
hidden_states = hidden_states * (1 + scale) + shift | |
hidden_states = self.nonlinearity(hidden_states) | |
hidden_states = self.dropout(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
if self.conv_shortcut is not None: | |
input_tensor = self.conv_shortcut(input_tensor) | |
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor | |
return output_tensor | |
class Mish(torch.nn.Module): | |
def forward(self, hidden_states): | |
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states)) | |
# unet_rl.py | |
def rearrange_dims(tensor): | |
if len(tensor.shape) == 2: | |
return tensor[:, :, None] | |
if len(tensor.shape) == 3: | |
return tensor[:, :, None, :] | |
elif len(tensor.shape) == 4: | |
return tensor[:, :, 0, :] | |
else: | |
raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.") | |
class Conv1dBlock(nn.Module): | |
""" | |
Conv1d --> GroupNorm --> Mish | |
""" | |
def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8): | |
super().__init__() | |
self.conv1d = nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2) | |
self.group_norm = nn.GroupNorm(n_groups, out_channels) | |
self.mish = nn.Mish() | |
def forward(self, x): | |
x = self.conv1d(x) | |
x = rearrange_dims(x) | |
x = self.group_norm(x) | |
x = rearrange_dims(x) | |
x = self.mish(x) | |
return x | |
# unet_rl.py | |
class ResidualTemporalBlock1D(nn.Module): | |
def __init__(self, inp_channels, out_channels, embed_dim, kernel_size=5): | |
super().__init__() | |
self.conv_in = Conv1dBlock(inp_channels, out_channels, kernel_size) | |
self.conv_out = Conv1dBlock(out_channels, out_channels, kernel_size) | |
self.time_emb_act = nn.Mish() | |
self.time_emb = nn.Linear(embed_dim, out_channels) | |
self.residual_conv = ( | |
nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity() | |
) | |
def forward(self, x, t): | |
""" | |
Args: | |
x : [ batch_size x inp_channels x horizon ] | |
t : [ batch_size x embed_dim ] | |
returns: | |
out : [ batch_size x out_channels x horizon ] | |
""" | |
t = self.time_emb_act(t) | |
t = self.time_emb(t) | |
out = self.conv_in(x) + rearrange_dims(t) | |
out = self.conv_out(out) | |
return out + self.residual_conv(x) | |
def upsample_2d(hidden_states, kernel=None, factor=2, gain=1): | |
r"""Upsample2D a batch of 2D images with the given filter. | |
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given | |
filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified | |
`gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is | |
a: multiple of the upsampling factor. | |
Args: | |
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. | |
kernel: FIR filter of the shape `[firH, firW]` or `[firN]` | |
(separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. | |
factor: Integer upsampling factor (default: 2). | |
gain: Scaling factor for signal magnitude (default: 1.0). | |
Returns: | |
output: Tensor of the shape `[N, C, H * factor, W * factor]` | |
""" | |
assert isinstance(factor, int) and factor >= 1 | |
if kernel is None: | |
kernel = [1] * factor | |
kernel = torch.tensor(kernel, dtype=torch.float32) | |
if kernel.ndim == 1: | |
kernel = torch.outer(kernel, kernel) | |
kernel /= torch.sum(kernel) | |
kernel = kernel * (gain * (factor**2)) | |
pad_value = kernel.shape[0] - factor | |
output = upfirdn2d_native( | |
hidden_states, | |
kernel.to(device=hidden_states.device), | |
up=factor, | |
pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2), | |
) | |
return output | |
def downsample_2d(hidden_states, kernel=None, factor=2, gain=1): | |
r"""Downsample2D a batch of 2D images with the given filter. | |
Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the | |
given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the | |
specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its | |
shape is a multiple of the downsampling factor. | |
Args: | |
hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. | |
kernel: FIR filter of the shape `[firH, firW]` or `[firN]` | |
(separable). The default is `[1] * factor`, which corresponds to average pooling. | |
factor: Integer downsampling factor (default: 2). | |
gain: Scaling factor for signal magnitude (default: 1.0). | |
Returns: | |
output: Tensor of the shape `[N, C, H // factor, W // factor]` | |
""" | |
assert isinstance(factor, int) and factor >= 1 | |
if kernel is None: | |
kernel = [1] * factor | |
kernel = torch.tensor(kernel, dtype=torch.float32) | |
if kernel.ndim == 1: | |
kernel = torch.outer(kernel, kernel) | |
kernel /= torch.sum(kernel) | |
kernel = kernel * gain | |
pad_value = kernel.shape[0] - factor | |
output = upfirdn2d_native( | |
hidden_states, kernel.to(device=hidden_states.device), down=factor, pad=((pad_value + 1) // 2, pad_value // 2) | |
) | |
return output | |
def upfirdn2d_native(tensor, kernel, up=1, down=1, pad=(0, 0)): | |
up_x = up_y = up | |
down_x = down_y = down | |
pad_x0 = pad_y0 = pad[0] | |
pad_x1 = pad_y1 = pad[1] | |
_, channel, in_h, in_w = tensor.shape | |
tensor = tensor.reshape(-1, in_h, in_w, 1) | |
_, in_h, in_w, minor = tensor.shape | |
kernel_h, kernel_w = kernel.shape | |
out = tensor.view(-1, in_h, 1, in_w, 1, minor) | |
out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) | |
out = out.view(-1, in_h * up_y, in_w * up_x, minor) | |
out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) | |
out = out.to(tensor.device) # Move back to mps if necessary | |
out = out[ | |
:, | |
max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), | |
max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), | |
:, | |
] | |
out = out.permute(0, 3, 1, 2) | |
out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) | |
w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) | |
out = F.conv2d(out, w) | |
out = out.reshape( | |
-1, | |
minor, | |
in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, | |
in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, | |
) | |
out = out.permute(0, 2, 3, 1) | |
out = out[:, ::down_y, ::down_x, :] | |
out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 | |
out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 | |
return out.view(-1, channel, out_h, out_w) | |
class TemporalConvLayer(nn.Module): | |
""" | |
Temporal convolutional layer that can be used for video (sequence of images) input Code mostly copied from: | |
https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016 | |
""" | |
def __init__(self, in_dim, out_dim=None, dropout=0.0): | |
super().__init__() | |
out_dim = out_dim or in_dim | |
self.in_dim = in_dim | |
self.out_dim = out_dim | |
# conv layers | |
self.conv1 = nn.Sequential( | |
nn.GroupNorm(32, in_dim), nn.SiLU(), nn.Conv3d(in_dim, out_dim, (3, 1, 1), padding=(1, 0, 0)) | |
) | |
self.conv2 = nn.Sequential( | |
nn.GroupNorm(32, out_dim), | |
nn.SiLU(), | |
nn.Dropout(dropout), | |
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)), | |
) | |
self.conv3 = nn.Sequential( | |
nn.GroupNorm(32, out_dim), | |
nn.SiLU(), | |
nn.Dropout(dropout), | |
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)), | |
) | |
self.conv4 = nn.Sequential( | |
nn.GroupNorm(32, out_dim), | |
nn.SiLU(), | |
nn.Dropout(dropout), | |
nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)), | |
) | |
# zero out the last layer params,so the conv block is identity | |
nn.init.zeros_(self.conv4[-1].weight) | |
nn.init.zeros_(self.conv4[-1].bias) | |
def forward(self, hidden_states, num_frames=1): | |
hidden_states = ( | |
hidden_states[None, :].reshape((-1, num_frames) + hidden_states.shape[1:]).permute(0, 2, 1, 3, 4) | |
) | |
identity = hidden_states | |
hidden_states = self.conv1(hidden_states) | |
hidden_states = self.conv2(hidden_states) | |
hidden_states = self.conv3(hidden_states) | |
hidden_states = self.conv4(hidden_states) | |
hidden_states = identity + hidden_states | |
hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape( | |
(hidden_states.shape[0] * hidden_states.shape[2], -1) + hidden_states.shape[3:] | |
) | |
return hidden_states | |