File size: 8,325 Bytes
a18d1e2
 
 
 
 
 
d0a7bdc
f23ad63
d0a7bdc
 
 
e139162
f23ad63
e139162
d0a7bdc
a18d1e2
 
 
 
 
 
 
 
 
 
 
 
0bb5fec
 
 
 
 
 
 
a18d1e2
0bb5fec
 
 
 
 
 
 
 
 
 
 
 
a18d1e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f23ad63
a18d1e2
f23ad63
 
 
 
 
a18d1e2
 
 
 
 
 
 
 
f6a6a4d
a18d1e2
 
97acdc9
 
 
 
a18d1e2
 
 
 
 
 
 
 
 
 
97acdc9
 
 
 
a18d1e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0bb5fec
 
a18d1e2
f23ad63
e139162
f23ad63
 
 
a18d1e2
 
f23ad63
 
a18d1e2
 
 
 
 
 
0bb5fec
 
a18d1e2
 
 
 
 
 
 
 
 
 
 
 
0bb5fec
a18d1e2
e139162
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import gradio as gr
from mistralai import Mistral
from langchain_community.tools import TavilySearchResults, JinaSearch
import concurrent.futures
import json
import os
import arxiv 
from docx import Document
from PIL import Image
import io
import base64




# Set environment variables for Tavily API
os.environ["TAVILY_API_KEY"] = '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'

# Mistral client API keys
client_1 = Mistral(api_key='eLES5HrVqduOE1OSWG6C5XyEUeR7qpXQ')
client_2 = Mistral(api_key='VPqG8sCy3JX5zFkpdiZ7bRSnTLKwngFJ')
client_3 = Mistral(api_key='cvyu5Rdk2lS026epqL4VB6BMPUcUMSgt')

# Function to encode images in base64
def encode_image_bytes(image_bytes):
    return base64.b64encode(image_bytes).decode('utf-8')

# Function to decode base64 images
def decode_base64_image(base64_str):
    image_data = base64.b64decode(base64_str)
    return Image.open(io.BytesIO(image_data))

# Process text and images provided by the user
def process_input(text_input, images_base64):
    images = []
    if images_base64:
        for img_data in images_base64:
            try:
                img = decode_base64_image(img_data)
                buffered = io.BytesIO()
                img.save(buffered, format="JPEG")
                image_base64 = encode_image_bytes(buffered.getvalue())
                images.append({"type": "image_url", "image_url": f"data:image/jpeg;base64,{image_base64}"})
            except Exception as e:
                print(f"Error decoding image: {e}")

    return text_input, images

# Search setup function
def setup_search(question):
    try:
        tavily_tool = TavilySearchResults(max_results=20)
        results = tavily_tool.invoke({"query": f"{question}"})
        if isinstance(results, list):
            return results, 'tavily_tool'
    except Exception as e:
        print("Error with TavilySearchResults:", e)
    try:
        jina_tool = JinaSearch()
        results = json.loads(str(jina_tool.invoke({"query": f"{question}"})))
        if isinstance(results, list):
            return results, 'jina_tool'
    except Exception as e:
        print("Error with JinaSearch:", e)
    return [], ''

# Function to extract key topics
def extract_key_topics(content, images=[]):
    prompt = f"""
    Extract the primary themes from the text below. List each theme in as few words as possible, focusing on essential concepts only. Format as a concise, unordered list with no extraneous words.
    ```{content}```
    LIST IN ENGLISH:
    - 
    """
    message_content = [{"type": "text", "text": prompt}] + images
    response = client_1.chat.complete(
        model="pixtral-12b-2409",
        messages=[{"role": "user", "content": message_content}]
    )
    return response.choices[0].message.content

def search_relevant_articles_arxiv(key_topics, max_articles=100):
    articles_by_topic = {}
    final_topics = []

    def fetch_articles_for_topic(topic):
        topic_articles = []
        try:
            # Fetch articles using arxiv.py based on the topic
            search = arxiv.Search(
                query=topic,
                max_results=max_articles,
                sort_by=arxiv.SortCriterion.Relevance
            )
            for result in search.results():
                article_data = {
                    "title": result.title,
                    "doi": result.doi,
                    "summary": result.summary,
                    "url": result.entry_id,
                    "pdf_url": result.pdf_url
                }
                topic_articles.append(article_data)
            final_topics.append(topic)
        except Exception as e:
            print(f"Error fetching articles for topic '{topic}': {e}")

        return topic, topic_articles

    with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
        # Use threads to fetch articles for each topic
        futures = {executor.submit(fetch_articles_for_topic, topic): topic for topic in key_topics}
        for future in concurrent.futures.as_completed(futures):
            topic, articles = future.result()
            if articles:
                articles_by_topic[topic] = articles

    return articles_by_topic, list(set(final_topics))

# Initialize process for text analysis
def init(content, images=[]):
    key_topics = extract_key_topics(content, images)
    key_topics = [topic.strip("- ") for topic in key_topics.split("\n") if topic]
    articles_by_topic, final_topics = search_relevant_articles_arxiv(key_topics)
    result_json = json.dumps(articles_by_topic, indent=4)
    return final_topics, result_json

# Summarization function
def process_article_for_summary(text, images=[], compression_percentage=30):
    prompt = f"""
    You are a commentator.
    # article:
    {text}
    # Instructions:
    ## Summarize IN RUSSIAN:
    In clear and concise language, summarize the key points and themes presented in the article by cutting it by {compression_percentage} percent in the markdown format.
    """

    if len(images) >= 8 : 
        images = images[:7]
    
    message_content = [{"type": "text", "text": prompt}] + images
    response = client_3.chat.complete(
        model="pixtral-12b-2409",
        messages=[{"role": "user", "content": message_content}]
    )
    return response.choices[0].message.content

# Question answering function
def ask_question_to_mistral(text, question, images=[]):
    prompt = f"Answer the following question without mentioning it or repeating the original text on which the question is asked in style markdown.IN RUSSIAN:\nQuestion: {question}\n\nText:\n{text}"

    if len(images) >= 8 : 
        images = images[:7]
    
    message_content = [{"type": "text", "text": prompt}] + images
    search_tool, tool = setup_search(question)
    context = ''
    if search_tool:
        if tool == 'tavily_tool':
            for result in search_tool:
                context += f"{result.get('url', 'N/A')} : {result.get('content', 'No content')} \n"
        elif tool == 'jina_tool':
            for result in search_tool:
                context += f"{result.get('link', 'N/A')} : {result.get('snippet', 'No snippet')} : {result.get('content', 'No content')} \n"
    response = client_2.chat.complete(
        model="pixtral-12b-2409",
        messages=[{"role": "user", "content": f'{message_content}\n\nAdditional Context from Web Search:\n{context}'}]
    )
    return response.choices[0].message.content

# Gradio interface
def gradio_interface(text_input, images_base64, task, question, compression_percentage):
    text, images = process_input(text_input, images_base64)

    topics, articles_json = init(text, images)

    if task == "Summarization":
        summary = process_article_for_summary(text, images, compression_percentage)
        return {"Topics": topics, "Summary": summary, "Articles": articles_json}
    elif task == "Question Answering":
        if question:
            answer = ask_question_to_mistral(text, question, images)
            return {"Topics": topics, "Answer": answer, "Articles": articles_json}
        else:
            return {"Topics": topics, "Answer": "No question provided.", "Articles": articles_json}

with gr.Blocks() as demo:
    gr.Markdown("## Text Analysis: Summarization or Question Answering")
    with gr.Row():
        text_input = gr.Textbox(label="Input Text")
        images_base64 = gr.Textbox(label="Base64 Images (comma-separated, if any)", placeholder="data:image/jpeg;base64,...", lines=2)
        task_choice = gr.Radio(["Summarization", "Question Answering"], label="Select Task")
        question_input = gr.Textbox(label="Question (for Question Answering)", visible=False)
        compression_input = gr.Slider(label="Compression Percentage (for Summarization)", minimum=10, maximum=90, value=30, visible=False)

    task_choice.change(lambda choice: (gr.update(visible=choice == "Question Answering"), 
                                       gr.update(visible=choice == "Summarization")),
                       inputs=task_choice, outputs=[question_input, compression_input])

    with gr.Row():
        result_output = gr.JSON(label="Results")

    submit_button = gr.Button("Submit")
    submit_button.click(gradio_interface, [text_input, images_base64, task_choice, question_input, compression_input], result_output)

demo.launch()