Spaces:
Sleeping
Sleeping
File size: 18,426 Bytes
a18d1e2 d0a7bdc 3f9c489 e139162 3f9c489 f23ad63 3f9c489 d0a7bdc a18d1e2 410ba66 3f9c489 a18d1e2 0bb5fec a18d1e2 0bb5fec a18d1e2 3f9c489 a18d1e2 3f9c489 a18d1e2 3f9c489 a18d1e2 f6a6a4d a18d1e2 97acdc9 a18d1e2 3f9c489 a18d1e2 97acdc9 a18d1e2 3f9c489 a18d1e2 0bb5fec a18d1e2 f23ad63 3f9c489 a18d1e2 3f9c489 a18d1e2 3f9c489 a18d1e2 0bb5fec a18d1e2 0bb5fec a18d1e2 3f9c489 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 |
import gradio as gr
from mistralai import Mistral
from langchain_community.tools import TavilySearchResults, JinaSearch
import concurrent.futures
import json
import os
import arxiv
from PIL import Image
import io
import base64
from langchain.chains import MapReduceDocumentsChain, ReduceDocumentsChain
from langchain.text_splitter import CharacterTextSplitter
from langchain_mistralai import ChatMistralAI
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.llm import LLMChain
from langchain_core.prompts import PromptTemplate
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("mistral-community/pixtral-12b")
def count_tokens_in_text(text):
tokens = tokenizer(text, return_tensors="pt", truncation=False, add_special_tokens=True)
return len(tokens["input_ids"][0])
# Set environment variables for Tavily API
os.environ["TAVILY_API_KEY"] = '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'
# Mistral client API keys
client_1 = Mistral(api_key='eLES5HrVqduOE1OSWG6C5XyEUeR7qpXQ')
client_2 = Mistral(api_key='VPqG8sCy3JX5zFkpdiZ7bRSnTLKwngFJ')
client_3 = Mistral(api_key='cvyu5Rdk2lS026epqL4VB6BMPUcUMSgt')
api_key_4 = 'aYls8aj48SOEov8AY1dwp4hr07MsCRFb'
client_4 = ChatMistralAI(api_key=api_key_4, model="pixtral-12b-2409")
# Function to encode images in base64
def encode_image_bytes(image_bytes):
return base64.b64encode(image_bytes).decode('utf-8')
# Function to decode base64 images
def decode_base64_image(base64_str):
image_data = base64.b64decode(base64_str)
return Image.open(io.BytesIO(image_data))
# Process text and images provided by the user
def process_input(text_input, images_base64):
images = []
if images_base64:
for img_data in images_base64:
try:
img = decode_base64_image(img_data)
buffered = io.BytesIO()
img.save(buffered, format="JPEG")
image_base64 = encode_image_bytes(buffered.getvalue())
images.append({"type": "image_url", "image_url": f"data:image/jpeg;base64,{image_base64}"})
except Exception as e:
print(f"Error decoding image: {e}")
return text_input, images
# Search setup function
def setup_search(question):
try:
tavily_tool = TavilySearchResults(max_results=20)
results = tavily_tool.invoke({"query": f"{question}"})
if isinstance(results, list):
return results, 'tavily_tool'
except Exception as e:
print("Error with TavilySearchResults:", e)
try:
jina_tool = JinaSearch()
results = json.loads(str(jina_tool.invoke({"query": f"{question}"})))
if isinstance(results, list):
return results, 'jina_tool'
except Exception as e:
print("Error with JinaSearch:", e)
return [], ''
# Function to extract key topics
def extract_key_topics(content, images=[]):
prompt = f"""
Extract the primary themes from the text below. List each theme in as few words as possible, focusing on essential concepts only. Format as a concise, unordered list with no extraneous words.
```{content}```
LIST IN ENGLISH:
-
"""
message_content = [{"type": "text", "text": prompt}] + images
response = client_1.chat.complete(
model="pixtral-12b-2409",
messages=[{"role": "user", "content": message_content}]
)
return response.choices[0].message.content
def extract_key_topics_with_large_text(content, images=[]):
# Map prompt template for extracting key themes
map_template = f"""
Текст: {{docs}}
Изображения: {{images}}
Extract the primary themes from the text below. List each theme in as few words as possible, focusing on essential concepts only. Format as a concise, unordered list with no extraneous words.
LIST IN ENGLISH:
-
:"""
map_prompt = PromptTemplate.from_template(map_template)
map_chain = LLMChain(llm=client_4, prompt=map_prompt)
# Reduce prompt template to further refine and extract key themes
reduce_template = f"""Следующий текст состоит из нескольких кратких итогов:
{{docs}}
Extract the primary themes from the text below. List each theme in as few words as possible, focusing on essential concepts only. Format as a concise, unordered list with no extraneous words.
LIST IN ENGLISH:
-
:"""
reduce_prompt = PromptTemplate.from_template(reduce_template)
reduce_chain = LLMChain(llm=client_4, prompt=reduce_prompt)
# Combine documents chain for Reduce step
combine_documents_chain = StuffDocumentsChain(
llm_chain=reduce_chain, document_variable_name="docs"
)
# ReduceDocumentsChain configuration
reduce_documents_chain = ReduceDocumentsChain(
combine_documents_chain=combine_documents_chain,
collapse_documents_chain=combine_documents_chain,
token_max=128000,
)
# MapReduceDocumentsChain combining Map and Reduce
map_reduce_chain = MapReduceDocumentsChain(
llm_chain=map_chain,
reduce_documents_chain=reduce_documents_chain,
document_variable_name="docs",
return_intermediate_steps=False,
)
# Text splitter configuration
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(
tokenizer,
chunk_size=100000,
chunk_overlap=14000,
)
# Split the text into documents
split_docs = text_splitter.create_documents([content])
# Include image descriptions (optional, if required by the prompt)
image_descriptions = "\n".join(
[f"Изображение {i+1}: {img['image_url']}" for i, img in enumerate(images)]
)
# Run the summarization chain to extract key themes
key_topics = map_reduce_chain.run({"input_documents": split_docs, "images": image_descriptions})
return key_topics
def search_relevant_articles_arxiv(key_topics, max_articles=100):
articles_by_topic = {}
final_topics = []
def fetch_articles_for_topic(topic):
topic_articles = []
try:
# Fetch articles using arxiv.py based on the topic
search = arxiv.Search(
query=topic,
max_results=max_articles,
sort_by=arxiv.SortCriterion.Relevance
)
for result in search.results():
article_data = {
"title": result.title,
"doi": result.doi,
"summary": result.summary,
"url": result.entry_id,
"pdf_url": result.pdf_url
}
topic_articles.append(article_data)
final_topics.append(topic)
except Exception as e:
print(f"Error fetching articles for topic '{topic}': {e}")
return topic, topic_articles
with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
# Use threads to fetch articles for each topic
futures = {executor.submit(fetch_articles_for_topic, topic): topic for topic in key_topics}
for future in concurrent.futures.as_completed(futures):
topic, articles = future.result()
if articles:
articles_by_topic[topic] = articles
return articles_by_topic, list(set(final_topics))
def init(content, images=[]):
if count_tokens_in_text(text=content) < 128_000:
key_topics = extract_key_topics(content, images)
key_topics = [topic.strip("- ") for topic in key_topics.split("\n") if topic]
articles_by_topic, final_topics = search_relevant_articles_arxiv(key_topics)
result_json = json.dumps(articles_by_topic, indent=4)
return final_topics, result_json
else:
key_topics = extract_key_topics_with_large_text(content, images)
key_topics = [topic.strip("- ") for topic in key_topics.split("\n") if topic]
articles_by_topic, final_topics = search_relevant_articles_arxiv(key_topics)
result_json = json.dumps(articles_by_topic, indent=4)
return final_topics, result_json
# Summarization function
def process_article_for_summary(text, images=[], compression_percentage=30):
prompt = f"""
You are a commentator.
# article:
{text}
# Instructions:
## Summarize IN RUSSIAN:
In clear and concise language, summarize the key points and themes presented in the article by cutting it by {compression_percentage} percent in the markdown format.
"""
if len(images) >= 8 :
images = images[:7]
message_content = [{"type": "text", "text": prompt}] + images
response = client_3.chat.complete(
model="pixtral-12b-2409",
messages=[{"role": "user", "content": message_content}]
)
return response.choices[0].message.content
def process_large_article_for_summary(text, images=[], compression_percentage=30):
# Map prompt template
map_template = f"""Следующий текст состоит из текста и изображений:
Текст: {{docs}}
Изображения: {{images}}
На основе приведенного материала, выполните сжатие текста, выделяя основные темы и важные моменты.
Уровень сжатия: {compression_percentage}%.
Ответ предоставьте на русском языке в формате Markdown.
Полезный ответ:"""
map_prompt = PromptTemplate.from_template(map_template)
map_chain = LLMChain(llm=client_4, prompt=map_prompt)
# Reduce prompt template
reduce_template = f"""Следующий текст состоит из нескольких кратких итогов:
{{docs}}
На основе этих кратких итогов, выполните финальное сжатие текста, объединяя основные темы и ключевые моменты.
Уровень сжатия: {compression_percentage}%.
Результат предоставьте на русском языке в формате Markdown.
Полезный ответ:"""
reduce_prompt = PromptTemplate.from_template(reduce_template)
reduce_chain = LLMChain(llm=client_4, prompt=reduce_prompt)
# Combine documents chain for Reduce step
combine_documents_chain = StuffDocumentsChain(
llm_chain=reduce_chain, document_variable_name="docs"
)
# ReduceDocumentsChain configuration
reduce_documents_chain = ReduceDocumentsChain(
combine_documents_chain=combine_documents_chain,
collapse_documents_chain=combine_documents_chain,
token_max=128000,
)
# MapReduceDocumentsChain combining Map and Reduce
map_reduce_chain = MapReduceDocumentsChain(
llm_chain=map_chain,
reduce_documents_chain=reduce_documents_chain,
document_variable_name="docs",
return_intermediate_steps=False,
)
# Text splitter configuration
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(
tokenizer,
chunk_size=100000,
chunk_overlap=14000,
)
# Split the text into documents
split_docs = text_splitter.create_documents([text])
# Include image descriptions
image_descriptions = "\n".join(
[f"Изображение {i+1}: {img['image_url']}" for i, img in enumerate(images)]
)
# Run the summarization chain
with concurrent.futures.ThreadPoolExecutor() as executor:
extract_future = executor.submit(init, text, images)
summary = map_reduce_chain.run({"input_documents": split_docs, "images": image_descriptions})
key_topics , result_article_json = extract_future.result()
return summary, key_topics, result_article_json
# Question answering function
def ask_question_to_mistral(text, question, images=[]):
prompt = f"Answer the following question without mentioning it or repeating the original text on which the question is asked in style markdown.IN RUSSIAN:\nQuestion: {question}\n\nText:\n{text}"
if len(images) >= 8 :
images = images[:7]
message_content = [{"type": "text", "text": prompt}] + images
search_tool, tool = setup_search(question)
context = ''
if search_tool:
if tool == 'tavily_tool':
for result in search_tool:
context += f"{result.get('url', 'N/A')} : {result.get('content', 'No content')} \n"
elif tool == 'jina_tool':
for result in search_tool:
context += f"{result.get('link', 'N/A')} : {result.get('snippet', 'No snippet')} : {result.get('content', 'No content')} \n"
response = client_2.chat.complete(
model="pixtral-12b-2409",
messages=[{"role": "user", "content": f'{message_content}\n\nAdditional Context from Web Search:\n{context}'}]
)
return response.choices[0].message.content
def ask_question_to_mistral_with_large_text(text, question, images=[]):
# Prompts for QA
map_template = """Следующий текст содержит статью/произведение:
Текст: {{docs}}
Изображения: {{images}}
На основе приведенного текста, ответьте на следующий вопрос:
Вопрос: {question}
Ответ должен быть точным. Пожалуйста, ответьте на русском языке в формате Markdown.
Полезный ответ:"""
reduce_template = """Следующий текст содержит несколько кратких ответов на вопрос:
{{docs}}
Объедините их в финальный ответ. Ответ предоставьте на русском языке в формате Markdown.
Полезный ответ:"""
map_prompt = PromptTemplate.from_template(map_template)
map_chain = LLMChain(llm=client_4, prompt=map_prompt)
reduce_prompt = PromptTemplate.from_template(reduce_template)
reduce_chain = LLMChain(llm=client_4, prompt=reduce_prompt)
# Combine documents chain for Reduce step
combine_documents_chain = StuffDocumentsChain(
llm_chain=reduce_chain, document_variable_name="docs"
)
# ReduceDocumentsChain configuration
reduce_documents_chain = ReduceDocumentsChain(
combine_documents_chain=combine_documents_chain,
collapse_documents_chain=combine_documents_chain,
token_max=128000,
)
# MapReduceDocumentsChain combining Map and Reduce
map_reduce_chain = MapReduceDocumentsChain(
llm_chain=map_chain,
reduce_documents_chain=reduce_documents_chain,
document_variable_name="docs",
return_intermediate_steps=False,
)
# Text splitter configuration
text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(
tokenizer,
chunk_size=100000,
chunk_overlap=14000,
)
# Split the text into documents
split_docs = text_splitter.create_documents([text])
# Include image descriptions
image_descriptions = "\n".join(
[f"Изображение {i+1}: {img['image_url']}" for i, img in enumerate(images)]
)
with concurrent.futures.ThreadPoolExecutor() as executor:
extract_future = executor.submit(init, text, images)
summary = map_reduce_chain.run({"input_documents": split_docs, "question": question , "images": image_descriptions})
key_topics , result_article_json = extract_future.result()
return summary, key_topics, result_article_json
# Gradio interface
def gradio_interface(text_input, images_base64, task, question, compression_percentage):
text, images = process_input(text_input, images_base64)
if task == "Summarization":
if count_tokens_in_text(text=text) < 128_000:
topics, articles_json = init(text, images)
summary = process_article_for_summary(text, images, compression_percentage)
return {"Topics": topics, "Summary": summary, "Articles": articles_json}
else:
summary , key_topics, result_article_json = process_large_article_for_summary(text, images, compression_percentage)
return {"Topics": key_topics, "Summary": summary, "Articles": result_article_json}
elif task == "Question Answering":
if question:
if count_tokens_in_text(text=text) < 128_000:
topics, articles_json = init(text, images)
answer = ask_question_to_mistral(text, question, images)
return {"Topics": topics, "Answer": answer, "Articles": articles_json}
else:
summary , key_topics, result_article_json = ask_question_to_mistral_with_large_text(text, question, images)
return {"Topics": key_topics, "Answer": answer, "Articles": result_article_json}
else:
return {"Topics": topics, "Answer": "No question provided.", "Articles": articles_json}
with gr.Blocks() as demo:
gr.Markdown("## Text Analysis: Summarization or Question Answering")
with gr.Row():
text_input = gr.Textbox(label="Input Text")
images_base64 = gr.Textbox(label="Base64 Images (comma-separated, if any)", placeholder="data:image/jpeg;base64,...", lines=2)
task_choice = gr.Radio(["Summarization", "Question Answering"], label="Select Task")
question_input = gr.Textbox(label="Question (for Question Answering)", visible=False)
compression_input = gr.Slider(label="Compression Percentage (for Summarization)", minimum=10, maximum=90, value=30, visible=False)
task_choice.change(lambda choice: (gr.update(visible=choice == "Question Answering"),
gr.update(visible=choice == "Summarization")),
inputs=task_choice, outputs=[question_input, compression_input])
with gr.Row():
result_output = gr.JSON(label="Results")
submit_button = gr.Button("Submit")
submit_button.click(gradio_interface, [text_input, images_base64, task_choice, question_input, compression_input], result_output)
demo.launch(show_error=True) |