Spaces:
Sleeping
Sleeping
File size: 16,352 Bytes
0d23076 43d5145 9a7561b dc92a64 9e0ff12 43d5145 d0c2cdc 8077ebf dc92a64 8077ebf 9e0ff12 43d5145 9e0ff12 8077ebf 9e0ff12 0d23076 43d5145 8077ebf dc92a64 8077ebf 9a7561b 8077ebf 9a7561b 8077ebf dc92a64 9a7561b 8077ebf 9a7561b 8077ebf dc92a64 ffc18a3 61357d4 ffc18a3 61357d4 dc92a64 fe93989 61357d4 ffc18a3 9a7561b 61357d4 fe93989 5db0d3c fe93989 61357d4 5db0d3c 9a7561b 5db0d3c dc92a64 5db0d3c 61357d4 9a7561b 5db0d3c 8077ebf dc92a64 5db0d3c 8077ebf dc92a64 5db0d3c 8077ebf dc92a64 61357d4 8077ebf dc92a64 61357d4 fe93989 61357d4 fe93989 61357d4 9a7561b 61357d4 fe93989 b3206d8 5db0d3c b3206d8 61357d4 9a7561b d0c2cdc 8077ebf dc92a64 5db0d3c 8077ebf 5db0d3c d0c2cdc 8077ebf d0c2cdc 5db0d3c 9a7561b 5db0d3c 8077ebf dc92a64 61357d4 5db0d3c 8077ebf dc92a64 5db0d3c 8077ebf dc92a64 8077ebf dc92a64 61357d4 fe93989 61357d4 9a7561b 61357d4 fe93989 5db0d3c b3206d8 5db0d3c fe93989 61357d4 9a7561b d0c2cdc 8077ebf dc92a64 5db0d3c 8077ebf 5db0d3c d0c2cdc 8077ebf d0c2cdc 5db0d3c 61357d4 9a7561b 5db0d3c 8077ebf dc92a64 5db0d3c fe93989 dc92a64 5db0d3c 8077ebf dc92a64 8077ebf dc92a64 61357d4 9a7561b 61357d4 0d23076 9e0ff12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 |
import gradio as gr
from transformers import pipeline, AutoTokenizer
from peft.auto import AutoPeftModelForSequenceClassification
from tensorboard.backend.event_processing import event_accumulator
import plotly.express as px
import pandas as pd
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
loraModel = AutoPeftModelForSequenceClassification.from_pretrained("Intradiction/text_classification_WithLORA")
tokenizer1 = AutoTokenizer.from_pretrained("albert-base-v2")
# Handle calls to DistilBERT------------------------------------------
distilBERTUntrained_pipe = pipeline("sentiment-analysis", model="bert-base-uncased")
distilBERTnoLORA_pipe = pipeline(model="Intradiction/text_classification_NoLORA")
distilBERTwithLORA_pipe = pipeline("sentiment-analysis", model=loraModel, tokenizer=tokenizer)
#text class models
def distilBERTnoLORA_fn(text):
return distilBERTnoLORA_pipe(text)
def distilBERTwithLORA_fn(text):
return distilBERTwithLORA_pipe(text)
def distilBERTUntrained_fn(text):
return distilBERTUntrained_pipe(text)
# Handle calls to ALBERT---------------------------------------------
ALbertUntrained_pipe = pipeline("text-classification", model="albert-base-v2")
AlbertnoLORA_pipe = pipeline(model="Intradiction/NLI-Conventional-Fine-Tuning")
#AlbertwithLORA_pipe = pipeline()
#NLI models
def AlbertnoLORA_fn(text1, text2):
return AlbertnoLORA_pipe({'text': text1, 'text_pair': text2})
def AlbertwithLORA_fn(text1, text2):
return ("working2")
def AlbertUntrained_fn(text1, text2):
return ALbertUntrained_pipe({'text': text1, 'text_pair': text2})
# Handle calls to Deberta--------------------------------------------
DebertaUntrained_pipe = pipeline("text-classification", model="microsoft/deberta-v3-xsmall")
#DebertanoLORA_pipe = pipeline()
#DebertawithLORA_pipe = pipeline()
#STS models
def DebertanoLORA_fn(text1, text2):
return ("working3")
def DebertawithLORA_fn(text1, text2):
return ("working2")
def DebertaUntrained_fn(text1, text2):
return DebertaUntrained_pipe({'text': text1, 'text_pair': text2})
#helper functions ------------------------------------------------------
#Text metrics for Untrained models
def displayMetricStatsUntrained():
return "No statistics to display for untrained models"
def displayMetricStatsText():
file_name = 'events.out.tfevents.1701212945.784ae33ab242.985.0'
event_acc = event_accumulator.EventAccumulator(file_name,
size_guidance={
event_accumulator.COMPRESSED_HISTOGRAMS: 500,
event_accumulator.IMAGES: 4,
event_accumulator.AUDIO: 4,
event_accumulator.SCALARS: 0,
event_accumulator.HISTOGRAMS: 1,
})
event_acc.Reload()
accuracy_data = event_acc.Scalars('eval/accuracy')
loss_data = event_acc.Scalars('eval/loss')
metrics = ''
for i in range(0, len(loss_data)):
metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
return metrics
def displayMetricStatsGraph():
file_name = 'events.out.tfevents.1701212945.784ae33ab242.985.0'
event_acc = event_accumulator.EventAccumulator(file_name,
size_guidance={
event_accumulator.COMPRESSED_HISTOGRAMS: 500,
event_accumulator.IMAGES: 4,
event_accumulator.AUDIO: 4,
event_accumulator.SCALARS: 0,
event_accumulator.HISTOGRAMS: 1,
})
event_acc.Reload()
accuracy_data = event_acc.Scalars('eval/accuracy')
loss_data = event_acc.Scalars("eval/loss")
epoch = []
metric = []
group = []
for i in range(0, len(accuracy_data)):
epoch.append(str(i))
metric.append(accuracy_data[i].value)
group.append('G1')
for j in range(0, len(loss_data)):
epoch.append(str(j))
metric.append(loss_data[j].value)
group.append('G2')
data = pd.DataFrame()
data['Epoch'] = epoch
data['Metric'] = metric
data['Group'] = group
#generate the actual plot
return px.line(data, x = 'Epoch', y = 'Metric', color=group, markers = True)
# #placeholder
# def chat1(message,history):
# history = history or []
# message = message.lower()
# if message.startswith("how many"):
# response = ("1 to 10")
# else:
# response = ("whatever man whatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever man")
# history.append((message, response))
# return history, history
with gr.Blocks(
title="",
) as demo:
gr.Markdown("""
<div style="overflow: hidden;color:#fff;display: flex;flex-direction: column;align-items: center; position: relative; width: 100%; height: 180px;background-size: cover; background-image: url(https://www.grssigns.co.uk/wp-content/uploads/web-Header-Background.jpg);">
<img style="width: 130px;height: 60px;position: absolute;top:10px;left:10px" src="https://www.torontomu.ca/content/dam/tmumobile/images/TMU-Mobile-AppIcon.png"/>
<span style="margin-top: 40px;font-size: 36px ;font-family:fantasy;">Efficient Fine Tuning Of Large Language Models</span>
<span style="margin-top: 10px;font-size: 14px;">By: Rahul Adams, Greylyn Gao, Rajevan Logarajah & Mahir Faisal</span>
<span style="margin-top: 5px;font-size: 14px;">Group Id: AR06 FLC: Alice Reuda</span>
</div>
""")
with gr.Tab("Text Classification"):
with gr.Row():
gr.Markdown("<h1>Efficient Fine Tuning for Text Classification</h1>")
with gr.Row():
with gr.Column(variant="panel"):
gr.Markdown("""
<h2>Specifications</h2>
<p><b>Model:</b> Tiny Bert <br>
<b>Dataset:</b> IMDB Movie review dataset <br>
<b>NLP Task:</b> Text Classification</p>
<p>Text classification is an NLP task that focuses on automatically ascribing a predefined category or labels to an input prompt. In this demonstration the Tiny Bert model has been used to classify the text on the basis of sentiment analysis, where the labels (negative and positive) will indicate the emotional state expressed by the input prompt. The tiny bert model was chosen as in its base state its ability to perform sentiment analysis is quite poor, displayed by the untrained model, which often fails to correctly ascribe the label to the sentiment. The models were trained on the IMDB dataset which includes over 100k sentiment pairs pulled from IMDB movie reviews. We can see that when training is performed over [XX] of epochs we see an increase in X% of training time for the LoRA trained model.</p>
""")
with gr.Column(variant="panel"):
inp = gr.Textbox(placeholder="Prompt",label= "Enter Query")
btn = gr.Button("Run")
btnTextClassStats = gr.Button("Display Training Metrics")
btnTensorLink = gr.Button(value="View Tensorboard Graphs", link="https://huggingface.co/Intradiction/text_classification_NoLORA/tensorboard")
gr.Examples(
[
"I thought this was a bit contrived",
"You would need to be a child to enjoy this",
"Drive more like Drive away",
],
inp,
label="Try asking",
)
with gr.Column(scale=3):
with gr.Row(variant="panel"):
TextClassOut = gr.Textbox(label= "Untrained Base Model")
TextClassUntrained = gr.Textbox(label = "Training Informaiton")
with gr.Row(variant="panel"):
TextClassOut1 = gr.Textbox(label= "Conventionaly Trained Model")
TextClassNoLoraStats = gr.Textbox(label = "Training Informaiton")
with gr.Row(variant="panel"):
TextClassOut2 = gr.Textbox(label= "LoRA Fine Tuned Model")
TextClassLoraStats = gr.Textbox(label = "Training Informaiton")
btn.click(fn=distilBERTUntrained_fn, inputs=inp, outputs=TextClassOut)
btn.click(fn=distilBERTnoLORA_fn, inputs=inp, outputs=TextClassOut1)
btn.click(fn=distilBERTwithLORA_fn, inputs=inp, outputs=TextClassOut2)
btnTextClassStats.click(fn=displayMetricStatsUntrained, outputs=TextClassUntrained)
btnTextClassStats.click(fn=displayMetricStatsText, outputs=TextClassNoLoraStats)
btnTextClassStats.click(fn=DebertawithLORA_fn, outputs=TextClassLoraStats) #to be changed
with gr.Tab("Natural Language Inferencing"):
with gr.Row():
gr.Markdown("<h1>Efficient Fine Tuning for Natural Language Inferencing</h1>")
with gr.Row():
with gr.Column(variant="panel"):
gr.Markdown("""
<h2>Specifications</h2>
<p><b>Model:</b> Albert <br>
<b>Dataset:</b> Stanford Natural Language Inference Dataset <br>
<b>NLP Task:</b> Natual Languae Infrencing</p>
<p>Natural Language Inference (NLI) which can also be referred to as Textual Entailment is an NLP task with the objective of determining the relationship between two pieces of text. In this demonstration the Albert model has been used to determine textual similarity ascribing a correlation score by the comparison of the two input prompts to determine if. Albert was chosen due to its substandard level of performance in its base state allowing room for improvement during training. The models were trained on the Stanford Natural Language Inference Dataset is a collection of 570k human-written English sentence pairs manually labeled for balanced classification, listed as positive, negative or neutral. We can see that when training is performed over [XX] epochs we see an increase in X% of training time for the LoRA trained model compared to a conventionally tuned model. </p>
""")
with gr.Column(variant="panel"):
nli_p1 = gr.Textbox(placeholder="Prompt One",label= "Enter Query")
nli_p2 = gr.Textbox(placeholder="Prompt Two",label= "Enter Query")
nli_btn = gr.Button("Run")
btnNLIStats = gr.Button("Display Training Metrics")
btnTensorLink1 = gr.Button(value="View Tensorboard Graphs", link="https://huggingface.co/Intradiction/text_classification_NoLORA/tensorboard") #to be changed
gr.Examples(
[
"I am with my friends",
"People like apples",
"Dogs like bones",
],
nli_p1,
label="Try asking",
)
gr.Examples(
[
"I am happy",
"Apples are good",
"Bones like dogs",
],
nli_p2,
label="Try asking",
)
with gr.Column(scale=3):
with gr.Row(variant="panel"):
NLIOut = gr.Textbox(label= "Untrained Base Model")
NLIUntrained = gr.Textbox(label = "Training Informaiton")
with gr.Row(variant="panel"):
NLIOut1 = gr.Textbox(label= "Conventionaly Trained Model")
NLINoLoraStats = gr.Textbox(label = "Training Informaiton")
with gr.Row(variant="panel"):
NLIOut2 = gr.Textbox(label= "LoRA Fine Tuned Model")
NLILoraStats = gr.Textbox(label = "Training Informaiton")
nli_btn.click(fn=AlbertUntrained_fn, inputs=[nli_p1,nli_p2], outputs=NLIOut)
nli_btn.click(fn=AlbertnoLORA_fn, inputs=[nli_p1,nli_p2], outputs=NLIOut1)
nli_btn.click(fn=AlbertwithLORA_fn, inputs=[nli_p1,nli_p2], outputs=NLIOut2)
btnNLIStats.click(fn=displayMetricStatsUntrained, outputs=NLIUntrained)
#btnNLIStats.click(fn=displayMetricStatsUntrained, outputs=NLINoLoraStats)
#btnNLIStats.click(fn=displayMetricStatsUntrained, outputs=NLILoraStats)
with gr.Tab("Semantic Text Similarity"):
with gr.Row():
gr.Markdown("<h1>Efficient Fine Tuning for Semantic Text Similarity</h1>")
with gr.Row():
with gr.Column(variant="panel"):
gr.Markdown("""
<h2>Specifications</h2>
<p><b>Model:</b> DeBERTa-v3-xsmall <br>
<b>Dataset:</b> Semantic Text Similarity Benchmark <br>
<b>NLP Task:</b> Semantic Text Similarity</p>
<p>Semantic text similarity measures the closeness in meaning of two pieces of text despite differences in their wording or structure. This task involves two input prompts which can be sentences, phrases or entire documents and assessing them for similarity. In our implementation we compare phrases represented by a score that can range between zero and one. A score of zero implies completely different phrases, while one indicates identical meaning between the text pair. This implementation uses a DeBERTa-v3-xsmall and training was performed on the semantic text similarity benchmark dataset which contains over 86k semantic pairs and their scores. We can see that when training is performed over [XX] epochs we see an increase in X% of training time for the LoRA trained model compared to a conventionally tuned model.</p>
""")
with gr.Column(variant="panel"):
sts_p1 = gr.Textbox(placeholder="Prompt One",label= "Enter Query")
sts_p2 = gr.Textbox(placeholder="Prompt Two",label= "Enter Query")
sts_btn = gr.Button("Run")
btnSTSStats = gr.Button("Display Training Metrics")
btnTensorLink2 = gr.Button(value="View Tensorboard Graphs", link="https://huggingface.co/Intradiction/text_classification_NoLORA/tensorboard") #to be changed
gr.Examples(
[
"the ball is green",
"i dont like apples",
"our air is clean becase of trees",
],
sts_p1,
label="Try asking",
)
gr.Examples(
[
"the green ball",
"apples are great",
"trees produce oxygen",
],
sts_p2,
label="Try asking",
)
with gr.Column(scale=3):
with gr.Row(variant="panel"):
sts_out = gr.Textbox(label= "Untrained Base Model")
STSUntrained = gr.Textbox(label = "Training Informaiton")
with gr.Row(variant="panel"):
sts_out1 = gr.Textbox(label= "Conventionally Trained Model")
STSNoLoraStats = gr.Textbox(label = "Training Informaiton")
with gr.Row(variant="panel"):
sts_out2 = gr.Textbox(label= "LoRA Fine Tuned Model")
STSLoraStats = gr.Textbox(label = "Training Informaiton")
sts_btn.click(fn=DebertaUntrained_fn, inputs=[sts_p1,sts_p2], outputs=sts_out)
sts_btn.click(fn=DebertanoLORA_fn, inputs=[sts_p1,sts_p2], outputs=sts_out1)
sts_btn.click(fn=DebertawithLORA_fn, inputs=[sts_p1,sts_p2], outputs=sts_out2)
btnSTSStats.click(fn=displayMetricStatsUntrained, outputs=STSUntrained)
#btnSTSStats.click(fn=displayMetricStatsUntrained, outputs=STSNoLoraStats)
#btnSTSStats.click(fn=displayMetricStatsUntrained, outputs=STSLoraStats)
with gr.Tab("More informatioen"):
gr.Markdown("stuff to add")
if __name__ == "__main__":
demo.launch() |